第1節

第 / 頁,共 / 頁

科目: 基礎數學

- (20%) 1. Let $f(x) = 2x^{\frac{5}{3}} 5x^{\frac{4}{3}}$, find the relative extremes of the function, the points of inflection, the intervals where the graph is concave upward and those where it is concave downward, and sketch the graph.
- (10%) 2. (a) Use Lagrange multipliers to prove that the product of three positive number x, y, and z, whose sum has the constant value S, is a maximum when the three numbers are equal.
 - (b) Use (a) to prove that

$$\sqrt[3]{xyz} \le \frac{x+y+z}{3}.$$

(10%) 3. Evaluate $\int_0^{\sqrt{\frac{\pi}{2}}} \int_x^{\sqrt{\frac{\pi}{2}}} \int_1^3 \sin(y^2) dz dy dx.$

(24%) 4. Let A be the 3×3 matrix given by

$$A = \left[\begin{array}{rrrr} 5 & -1 & -1 \\ -1 & 5 & -1 \\ -1 & -1 & 5 \end{array} \right]$$

- (a) Find the eigenvalues and associated eigenvectors of A.
- (b) Find an orthogonal matrix P, and a diagonal matrix Λ , such that

$$A = P\Lambda P^T.$$

- (c) Find the inverse of A.
- (d) Find the eigenspaces of A.
- (e) Show that for the symmetric matrix the eigenspaces associated with different eigenvalues are orthogonal.
- (18%) 5. Let V be the real vector space spanned by the rows of the matrix

$$A = \begin{bmatrix} 3 & 21 & 0 & 9 & 0 \\ 1 & 7 & -1 & -2 & -1 \\ 2 & 14 & 0 & 6 & 1 \\ 6 & 42 & -1 & 13 & 0 \end{bmatrix}$$

- (a) Find a basis for V.
- (b) Tell which vectors $(x_1, x_2, x_3, x_4, x_5)$ are elements of V.
- (c) If $(x_1, x_2, x_3, x_4, x_5)$ is in V what are its coordinates in the basis chosen in part (a)?
- (18%) 6. Let T be the linear operator on \mathbb{R}^3 defined by

$$T(x_1, x_2, x_3) = (3x_1 + x_3, -2x_1 + x_2, -x_1 + 2x_2 + 4x_3).$$

- (a) What is the matrix of T in the standard ordered basis for \mathbb{R}^3 ?
- (b) What is matrix of T in the ordered basis

$$\{\alpha_1, \alpha_2, \alpha_3\}$$

where $\alpha_1 = (1, 0, 1)$, $\alpha_2 = (-1, 2, 1)$, and $\alpha_3 = (2, 1, 1)$?

(c) Prove that T is invertible and give a rule for T^{-1} like the one which defines T.