國立中山大學 101 學年度碩士暨碩士專班招生考試試題

科目:電子學【海下海物所碩士班選

題號:4163

考】

共2頁第1頁

- 1. (18%) For the circuit in Fig. 1, find the values of i_I , v_I , i_I , i_2 , v_o , i_L , and i_o . Also find the voltage gain v_o/v_I , and the current gain i_L/i_I .
- 2. (20%) The 6.8-V zener diode in the circuit of Fig. 2 is specified to have $V_Z = 6.8$ V at $I_Z = 5$ mA, $r_z = 20$ Ω , and $I_{ZK} = 0.2$ mA. The supply voltage V^+ is nominally 10 V but can vary by ± 1 V. (a) Find V_O with no load and with V^+ at its nominal value. (b) Find the change in V_O resulting from the ± 1 -V change in V^+ . (c) Find the change in V_O resulting from connecting a load resistance R_L that draws a current $I_L = 1$ mA. (d) Find the change in V_O when $R_L = 2$ k Ω . (e) Find the value of V_O when $R_L = 0.5$ k Ω .
- 3. (16%) Figure 3 shows a discrete common-source MOSFET amplifier utilizing the drain-to-gate feedback biasing arrangement. Determine the small-signal voltage gain v_o/v_i , and the input resistance $R_{\rm in}$. The transistor has $V_t = 1.5 \text{ V}$, $k'_n(W/L) = 0.25 \text{ mA/V}^2$, and $V_A = 50 \text{ V}$. Assume the coupling capacitors to be sufficiently large so as to act as short circuits at the signal frequencies of interest.
- 4. (15%) A piezoelectric crystal, such as quartz, exhibits electromechanical-resonance characteristics that are very stable and high Q factors. The circuit symbol of a crystal is shown in Fig. 4(a) and its equivalent circuit model is given in Fig. 4(b). A 2-MHz quartz crystal is specified to have L = 0.52 H, $C_s = 0.012$ pF, $C_p = 4$ pF, and r = 120 Ω . Find the series resonance frequency f_s , parallel resonance frequency f_p , and the Q factor.
- 5. (15%) For the class B output stage of Fig. 5, let $V_{CC} = 6$ V and $R_L = 4 \Omega$. If the output is a sinusoid with 4.5-V peak amplitude, find (a) the output power; (b) the average power drawn from each supply; (c) the power efficiency obtained at this output voltage; (d) the peak currents supplied by v_I , assuming that $\beta_N = \beta_P = 50$; (e) the maximum power that each transistor must be capable of dissipating safely.
- 6. (16%) For a pn junction with $N_A = 10^{17}/\text{cm}^3$ and $N_D = 10^{16}/\text{cm}^3$, find, at T = 300 K, the built-in voltage, the width of the depletion region, and the distance it extends in the p side and in the n side of the junction. Use $n_i = 1.5 \times 10^{10}/\text{cm}^3$.

國立中山大學 101 學年度碩士暨碩士專班招生考試試題

科目:電子學【海下海物所碩士班選

題號:4163

共2頁第2頁

考】

Fig. 1

Fig. 3

Fig. 5

Fig. 2

Fig. 4