國立中央大學101學年度碩士班考試入學試題卷

所別:<u>統計研究所碩士班 不分組(一般生)</u> 科目:<u>數理統計 共_2</u>頁 第<u>/</u>頁 統計研究所碩士班 不分組(在職生)

本科考試可使用計算器,廠牌、功能不拘

*請在試卷答案卷(卡)內作答

- 1. Let $X_1, X_2, ..., X_m$ be a random sample from the normal distribution $N(\mu, \sigma^2)$.

 Also, let $Y_1, Y_2, ..., Y_n$ be a random sample from $N(2\mu, 4\sigma^2)$. Consider $g(\overline{X}, \overline{Y}) = a\overline{X} + b\overline{Y}$, where \overline{X} and \overline{Y} are the sample means of the X and Y samples, respectively.
 - (a) Find the values of a and b such that $g(\overline{X}, \overline{Y})$ is an unbiased estimator of μ with minimum variance. (10%)
 - (b) Find an estimator of the variance of the $g(\bar{X}, \bar{Y})$ in (a). (8%)
 - (c) Construct a $100(1-\alpha)\%$ confidence interval for μ based on the $g(\overline{X},\overline{Y})$ in (a). (6%)
- 2. Let $X_1, X_2, ..., X_n$ be a random sample from the normal distribution $N(\mu, \sigma^2)$.
 - (a) Find the first and third quartiles (25th and 75th percentiles) of $N(\mu, \sigma^2)$, denoted by q_1 and q_3 , respectively, and hence the inter-quartile range $IQR=q_3-q_1$. (10%)
 - (b) Find the maximum likelihood estimator of the IQR in (a) based on $X_1, X_2, ..., X_n$. (6%)

[Hint: The 75th percentile of a standard normal distribution is z(0.75)=0.674].

- 3. Let $X_1, X_2, ..., X_n$ be a random sample from the exponential distribution with probability density function (pdf) $f(x;\theta) = \theta \exp(-\theta x), x > 0; = 0, \text{ otherwise.}$
 - (a) Verify that $2\theta \sum_{i=1}^{n} X_{i}$ has a Chi-square distribution with degrees of freedom 2n, denoted by χ_{2n}^{2} . (10%)
 - (b) Derive a $100(1-\alpha)\%$ confidence interval for P(X > x). (10%)

注:背面有試題

國立中央大學101學年度碩士班考試入學試題卷

所別:<u>統計研究所碩士班 不分組(一般生)</u> 科目:<u>數理統計</u> 共<u>2</u>頁 第<u>2</u>頁 統計研究所碩士班 不分組(在職生)

本科考試可使用計算器,廠牌、功能不拘

*請在試卷答案卷(卡)內作答

4. Let $X_1, X_2, ..., X_n$ be serially correlated random variables that satisfy

$$X_i = \theta X_{i-1} + \varepsilon_i, i = 1, ..., n,$$

where $X_0 = 0$ and the ε_i are independent $N(0, \sigma^2)$ random variables.

- (a) Find the maximum likelihood estimators of θ and σ^2 . (10%)
- (b) Find the likelihood ratio test for $H_0: \theta = 0$ against $H_1: \theta \neq 0$. (10%)
- 5. (a) Let X_1 and X_2 be independent random variables from a Bernoulli trial in which the probability of success may take a value of θ_1 or θ_2 . Assume that

$$f(0|\theta_1)=0.9$$
, $f(1|\theta_1)=0.1$, $f(0|\theta_2)=0.2$ and $f(1|\theta_2)=0.8$.

Let the associated prior distribution be $\pi(\theta_1) = 0.25$ and $\pi(\theta_2) = 0.75$. Find the posterior distribution of θ given $X_1 + X_2 = 1$ and test for $H_0 : \theta = \theta_1$ against $H_1 : \theta = \theta_2$ based on the posterior distribution. (10%)

(b) Let X be the number of failures before the first success in a sequence of Bernoulli trials with probability of success θ . Suppose that $\pi(\theta) = 1/3$ for $\theta = 0.25, 0.5, 0.75$ and 0, otherwise. Find the posterior distribution of θ given X = 2 and comment the most probable value of θ . (10%)

注:背面有試題