1．Find the following derivatives．

$$
\text { (a) } \frac{d}{d x} \ln \left|x^{3}+2^{x}\right|, \text { at } x=1 \quad \text { (b) } D_{x} e^{\sin \left(x^{2}+x\right)}
$$

2．Find the following integrals．
（a） $\int \frac{t}{\sqrt{1-t^{4}}} d t$
（b） $\int x^{2}(\ln x)^{2} d x$
（c） $\int_{0}^{\infty} \frac{x+1}{e^{3 x}} d x$
（d） $\int_{1}^{4} \frac{e^{\sqrt{x}}}{\sqrt{x}} d x$

3．Test $\int_{1}^{4} \frac{1}{(x-2)^{2}} d x$ for convergence．

4．Find the area between the curves $y=12-3 x^{2}$ and $y=4 x+5$ from $x=0$ to $x=3$ ．

5．Verify that $\int_{1}^{a b} \frac{1}{t} d t=\int_{1}^{a} \frac{1}{t} d t+\int_{1}^{b} \frac{1}{t} d t, \forall a, b>0$

6．Beginning 1 month from now，each month $\$ 250$ will be deposited into an account where the interest is compounded continuously at the annual rate of 9 percent．Use a definite integral to approximate the amount of money in the account immediately after the $36^{\text {th }}$ deposit．

7．The present value of the continuous stream of income $C(t)$ dollars per year，where t is the number of years from now，for T years at continuous interest rate r is $\int_{0}^{T} C(t) e^{-r t} d t$ ．A business generates income at the rate of $2 t$ million dollars per year，where t is the number of years from now．Find the present value of this continuous stream for the next five years at the continuous interest rate of 10% ．

8．A college textbook publishing firm finds that its yearly profit is
$P(x, y)=-0.5 x^{2}-3 y^{2}-2 x y+206 x+612 y$
hundreds if each year it sends x thousand complimentary copies of its book professors and employs y sales representatives．The high point on the graph of $P(x, y)$ is the highest point．How many complimentary copies and how many sales representatives should it employ to maximize the yearly profit？

