國立交通大學 101 學年度碩士班考試入學試題

科目:統計學(4083)

考試日期:101年2月17日 第 3節

系所班別:統計學研究所

組別:統計所

第 | 頁,共 | 頁

【不可使用計算機】*作答前請先核對試題、答案卷(試卷)與准考證之所組別與考科是否相符!!

1. Let X and Y be two random variables with joint pdf

$$f(x,y) = x + y, \ 0 < x < 1, 0 < y < 1.$$

- (a) (5%) Please derive conditional expectation E(Y|X) and verify that E[E(Y|X)] = E(Y).
- (b) (15%) Please verify that Var(Y) = E[Var(Y|X)] + Var[E(Y|X)].
- **2** (20%). Let $X_1,...,X_n$ be a random sample from $N(0,\theta^2)$, $\theta > 0$. Please derive the UMVUE of θ .
- 3. Let $X_1, ..., X_n$ be a random sample from a distribution with pdf

$$f(x,\theta) = e^{-(x-\theta)}I_{(\theta,\infty)}(x)$$

where $I_{(\theta,\infty)}(x) = 1$ if $\theta \le x < \infty$.

- (a) (15%) Find a complete and sufficient statistic.
- (b) (10%) Find the UMVUE of θ .
- 4. Let $Y_1, ..., Y_n$ be a random sample from a distribution with pdf $f(y) = \begin{cases} p_1 & \text{if } y = 1 \\ p_2 & \text{if } y = 2 \end{cases}$ with $p_1 + p_2 = 1$.
- (a) (10%) Please derive the mgf of Y and the mean E(Y) through this mgf.
- (b) (10%) Let $\bar{Y} = \frac{1}{n} \sum_{i=1}^{n} Y_i$ and $S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (Y_i \bar{Y})^2$. Please derive an approximate $100(1-\alpha)\%$ C.I. for p_1 (State the theorem applied in the derivation).
- $\mathbf{5}$ (15%). Please state and prove the Neyman-Pearson Theorem.