本科目可以使用計算機

本科目試題共) 頁

INSTRUCTIONS: This paper consists of three sections. Section A consists of 20 multiple choice (MC) questions. Section B consists of 10 MC questions asking about the logical implications of two statements. Each MC question carries 2 marks. Section C consists of 3 questions. Each carries 20 marks. You only have to answer two of them.

SECTION A: Multiple Choice (General)

Question 1

Let $\mathcal{D}=\{1,2,4,6,7\}$ and $\mathcal{R}=\{3,4,5\}$ be the domain and range of a mapping \mathcal{M} defined as follows:

$$\mathcal{M} = \{(1,4), (2,3), (4,4), (6,3), (7,3)\},\$$

i.e. $\mathcal{M}(1)=4$, $\mathcal{M}(2)=3$, $\mathcal{M}(4)=4$, $\mathcal{M}(6)=3$, $\mathcal{M}(7)=3$. What is the property of this mapping?

Answer:

- (a) M is an injective mapping.
- (b) M is a surjective mapping.
- (c) M is a bijective mapping.
- (d) None of the above.

Question 2

Which of the following statements about e is(are) true?

(i)
$$e = \lim_{n \to \infty} (1 + (1/n))^n$$
;

(ii)
$$e = \lim_{h \to 0} (1+h)^{1/h}$$
;

(iii)
$$\ln(e^2) = 2$$
.

Answers:

- (a) (i) and (ii) only
- (b) (ii) and (iii) only;
- (c) (i) and (iii) only;
- (d) (i), (ii) and (iii).

Question 3

The motion of a particle whose position P(x, y) at time t is given by

$$x = a\cos(t), \quad y = b\sin(t),$$

for $0 \le t \le 2\pi$. Find the line tangent to the curve at the point $(a/\sqrt{2}, b/\sqrt{2})$, where $t = \pi/4$. (The constants a and b are both positive.)

(a)
$$y = -\frac{b}{a}x + \sqrt{2}b$$
.

(b)
$$y = \frac{b}{a}x - \sqrt{2}b$$
.

(c)
$$y = -\frac{a}{b}x + \sqrt{2}a$$
.

(d)
$$y = \frac{a}{b}x - \sqrt{2}a$$
.

Question 4

Which of the following statements are true?

- (i) If $\int_a^b f(x)dx$ and $\int_a^b g(x)dx$ exist, $\int_a^b f(x) + g(x)dx$ exists.
- (ii) If $\int_a^b f(x)dx$ and $\int_a^b g(x)dx$ exist, $\int_a^b f(x) g(x)dx$ exists.
- (iii) If $\int_a^b f(x) + g(x)dx$ exists, both $\int_a^b f(x)dx$ and $\int_a^b g(x)dx$ exist.

Answer

- (a) (i) and (ii) only.
- (b) (ii) and (iii) only.
- (c) (i) and (iii) only.
- (d) (i), (ii) and (iii).

本科目可以使用計算機

本科目試題共) 頁

Question 5

Which of the following statements are true?

- (i) If f'(a) and g'(a) exist, f'(a) + g'(a) exists.
- (ii) If f'(a) and g'(a) exist, f'(a) g'(a) exists.
- (iii) If $\frac{d}{dx}(f(x) + g(x))|_{x=a}$ exists, both f'(a) and g'(a) exist.

Note that $f'(a) = \frac{d}{dx}f(x)\big|_{x=a}$.

Answer:

- (a) (i) and (ii) only.
- (b) (ii) and (iii) only.
- (c) (i) and (iii) only.
- (d) (i), (ii) and (iii).

Question 6

Which of the following statements are true?

- (i) If f(x) is injective, $f^{-1}(x)$ is injective.
- (ii) If f(x) is surjective, $f^{-1}(x)$ is surjective.
- (iii) If f(x) is bijective, $f^{-1}(x)$ is bijective.

Here $f^{-1}(x)$ is the inverse mapping of f(x).

Answer:

- (a) (i) only.
- (b) (ii) only.
- (c) (iii) only.
- (d) (i) and (ii) only.
- (e) (ii) and (iii) only.
- (f) (i) and (iii) only.

Question 7

Let f(x) is a differentiable function and $|f(x) - f(y)| \le K|x-y|$ for all $x, y \in R$ and K is a positive constant. Which of the following statements abut f(x) are true?

- (i) $df/dx \le K$ for all $x \in R$.
- (ii) $|df/dx| \le K$ for all $x \in R$.
- (iii) $\int_0^a df(x) \le Ka$.

Answer:

- (a) (i) and (ii) only.
- (b) (ii) and (iii) only.
- (c) (i) and (iii) only.
- (d) (i), (ii) and (iii).

Question 8

Suppose

$$I(\alpha) = \int_{a(\alpha)}^{b(\alpha)} f(x, \alpha) dx,$$

where $f(x, \alpha)$ is integrable function of x it the range $a \le x \le b$, a and b being continuous and at least once differentiable functions of α . Which of the following statements are true?

(i)

$$\frac{dI(\alpha)}{d\alpha} = f(b,\alpha)\frac{db}{d\alpha} - f(a,\alpha)\frac{da}{d\alpha} + \int_a^b \frac{\partial f(x,\alpha)}{\partial \alpha} dx.$$

(ii)

$$\frac{dI(\alpha)}{d\alpha} = f(b,\alpha)\frac{db}{d\alpha} + f(a,\alpha)\frac{da}{d\alpha} + \int_a^b \frac{\partial f(x,\alpha)}{\partial \alpha} dx.$$

(iii) If a and b do not depend on α .

$$\frac{dI(\alpha)}{d\alpha} = \int_a^b \frac{\partial f(x,\alpha)}{\partial \alpha} dx.$$

Answer:

- (a) (iii) only.
- (b) (i) and (ii) only.
- (c) (ii) and (iii) only.
- (d) (i) and (iii) only.

科目:微積分

系所:科技管理研究所科技管理班甲組

本科目可以使用計算機

本科目試題共1頁

Question 9

Let F(x, y, z) and G(x, y, z) are differentiable functions of x, y and z. Moreover, y(x) and z(x) are functions of x. Besides,

$$F(x, y, z) = 0, G(x, y, z) = 0.$$

Which of the following statements are true?

(i)

$$\frac{\partial F}{\partial x} + \frac{\partial F}{\partial y} \frac{dy}{dx} + \frac{\partial F}{\partial z} \frac{dz}{dx} = 0.$$

(ii)
$$\frac{dy}{dx} = -\left(\frac{\partial F}{\partial x}\frac{\partial G}{\partial z} - \frac{\partial F}{\partial z}\frac{\partial G}{\partial x}\right)\left(\frac{\partial F}{\partial y}\frac{\partial G}{\partial z} - \frac{\partial F}{\partial z}\frac{\partial G}{\partial y}\right)^{-1}.$$

(iii)

$$\frac{dy}{dx} = \left(\frac{\partial F}{\partial x}\frac{\partial G}{\partial y} - \frac{\partial F}{\partial y}\frac{\partial G}{\partial x}\right)\left(\frac{\partial F}{\partial y}\frac{\partial G}{\partial z} - \frac{\partial F}{\partial z}\frac{\partial G}{\partial y}\right)^{-1},$$

Answer:

- (a) (i) and (ii) only.
- (b) (ii) and (iii) only.
- (c) (i) and (iii) only.
- (d) (i), (ii) and (iii).

Question 10

Given that p(x,y) is an unknown joint probability density function defined on $(x,y) \in [a,b]^2$. The marginal probability density functions p(x) and p(y) are unknown. The only information is that the conditional probabilities p(x|y) and p(y|x) are known and they are larger than zero. Is it possible to find the joint probability density function p(x,y)?

Answer:

- (a) No, it is not possible.
- (b) Yes, it is possible. The answer is that

$$p(x,y) = p(y|x) \left(\int_a^b \frac{p(y|x)}{p(x|y)} dy \right)^{-1}.$$

(c) Yes, it is possible. The answer is that

$$p(x,y) = p(y|x) \left(\int_a^b \frac{p(x|y)}{p(y|x)} dy \right)^{-1}.$$

(d) Yes, it is possible. The answer is that

$$p(x,y) = p(x|y)p(y).$$

Question 11

It can readily be shown that, for $\alpha > 0$,

$$\int_0^\infty \exp(-\alpha x) dx = \frac{1}{\alpha},$$
$$\int_0^\infty \exp(-x^2) dx = \frac{\sqrt{\pi}}{2}.$$

Which of the following statements are true?

(i)
$$\int_0^\infty x^n \exp(-\alpha x) dx = \frac{n!}{\alpha^{n+1}}.$$

(ii)
$$\int_0^\infty \exp(-\alpha x^2) dx = \frac{1}{2} \left(\frac{\pi}{\alpha}\right)^{1/2}$$

(iii)
$$\int_0^\infty x^{2n} \exp(-\alpha x^2) dx$$
$$= \frac{1 \times 3 \times 5 \times \dots \times (2n-1)\sqrt{\pi}}{2^{n+1}\alpha^{n+1/2}},$$

where $n \geq 1$.

Answer:

- (a) (i) and (ii) only.
- (b) (ii) and (iii) only.
- (c) (i) and (iii) only.
- (d) (i), (ii) and (iii).

Question 12

Suppose f(x) is an odd function and g(x) is an even function. Which is the following statements is true?

(i)
$$\int_{-a}^{a} f(-x)g(-x)dx = 0$$
.

(ii)
$$\int_{-a}^{a} f(-x)g(x)dx = 0$$
.

科目:微積分

系所:科技管理研究所科技管理班甲組

本科目可以使用計算機

本科目試題共/頁

(iii) $\int_{-a}^{a} f(x)g(-x)dx = 0.$

Answer:

- (a) (i) and (ii) only.
- (b) (ii) and (iii) only.
- (c) (i) and (iii) only.
- (d) (i), (ii) and (iii).

Question 13

What is the value of the following definite integral?

$$F(a,b) = \int_0^1 x^a (1-x)^b dx,$$

where a and b are positive integers.

- (a) $F(a,b) = \frac{a!b!}{(a+b)!}$
- (b) $F(a,b) = \frac{a!b!}{(a+b+1)!}$
- (c) $F(a,b) = \frac{(a+b)!}{a!b!}$
- (d) $F(a,b) = \frac{(a+b+1)!}{a!b!}$

Question 14

A point (x, y) is moving on a plane in accordance with the following continuous functions x(t) and y(t),

$$x(t) = \sin(t), \quad y(t) = \cos(t).$$

(x(t), y(t)) is the location of a point on a plane at time t. What is the total length the point was moving from $t = \pi/4$ to $t = \pi$?

Answer:

- (a) No answer.
- (b) $\pi/2$.
- (c) $3\pi/4$.
- (d) 2π .

Question 15

Suppose f(x) is a continuous function defined on $[-\pi, \pi]$. Which of the following statements are true? Answer:

- (a) $\inf_{-\pi}^{\pi} f(x)dx = \inf_{-\pi}^{\pi} f(\pi x)dx$ only if f(x) is an odd function.
- (b) $\inf_{-\pi}^{\pi} f(x)dx = \inf_{-\pi}^{\pi} f(\pi x)dx$ only if f(x) is an even function.
- (c) $\inf_{-\pi}^{\pi} f(x)dx = \inf_{-\pi}^{\pi} f(\pi x)dx$ only if f(x) is differentiable function.
- (d) $\inf_{-\pi}^{\pi} f(x)dx = \inf_{-\pi}^{\pi} f(\pi x)dx$ for all continuous function f(x).

Question 16

Which of the following statements are correct if f(x) is an even function?

- (i) $\int_0^b f(x-a)dx = \int_0^b f(a-x)dx$, where b > 0 and $a \in [0,b]$.
- (ii) f(ax) = af(-x) for all $a \ge 0$.
- (iii) f(x-a) f(a-x) = 0 for all a > 0.

Answer:

- (a) (i) and (ii) only.
- (b) (ii) and (iii) only.
- (c) (i) and (iii) only.
- (d) (i), (ii) and (iii).

Question 17

Suppose f(x) is an odd function and F(x) is an integral defined upon f(x).

$$F(x) = \int_{-x}^{x} f(u)du.$$

Which of the following statements are true?

- (a) dF(x)/dx = f(x).
- (b) dF(x)/dx = 2f(x).
- (c) dF(x)/dx = -f(x).
- (d) dF(x)/dx = 0.

科目:微積分

系所:科技管理研究所科技管理班甲組

本科目可以使用計算機

本科目試題共1頁

Question 18

Which of the following conditions is a necessary and sufficient condition for applying mean value theorem?

- (a) f(x) must be a continuous function.
- (b) f(x) must be a differentiable function.
- (c) f(x) must be an integrable function.
- (d) None of the above.

Question 19

Suppose $f(x) = \exp(a + b \ln(1 + x))$, where a and b are positive integers larger than one. What is the value of the following definite integral?

$$\int_{-1}^{b} f(x)dx.$$

- (a) $(1+a)^{1+a} \exp(b)$.
- (b) $(1+b)^{1+b} \exp(a)$.
- (c) $(1+a)^a \exp(b)$.
- (d) $(1+b)^b \exp(a)$.

Here C_0 is a constant.

Question 20

Given a scalar function V(x) of $x \in \mathbb{R}^n$,

$$\mathbf{x}=(x_1,x_2,\cdots,x_n)^T,$$

and

$$V(\mathbf{x}) = \mathbf{x}^T \mathbf{W} \mathbf{x},$$

where $W = \text{is a } n \times n$ symmetric matrix, i.e. $W = W^T$, and its elements are denoted as w_{ij} for all $i, j = 1, \dots, n$. Let x_{-i} be the vector in which $x_i = 0$, i.e.

$$\mathbf{x}_{-i} = (x_1, \dots, x_{i-1}, 0, x_{i+1}, \dots, x_n)^T.$$

Here, the superscript T refers to transpose. Which of the following statement is true?

(i)
$$V(\mathbf{x}) - V(\mathbf{x}_{-i}) = 2 \sum_{j=1}^{n} w_{ij} x_i x_j$$
.

(ii)
$$V(\mathbf{x}) - V(\mathbf{x}_{-i}) = 2 \sum_{j=1, j \neq i}^{n} w_{ij} x_i x_j + w_{ii} x_i^2$$
.

Answer:

- (a) None of them.
- (b) (i) only
- (c) (ii) only
- (d) All of them.

SECTION B: Multiple Choice (Logical)

Instructions for Question 21 - Question 30: In each question, two statements X and Y are given. You have to identify the logical implication between X and Y. You have to give answer either one of the following options.

- (a) Both statements have no logical implication or at least one of the statements is false.
- (b) X implies Y, i.e. $X \Rightarrow Y$, only.
- (c) Y implies X, i.e. $X \Leftarrow Y$, only.
- (d) Both X implies Y and Y implies X, i.e. $X \Leftrightarrow Y$.

For example " $X \Rightarrow Y$ ", it means that the statement Y is true if statement X is true. In other words, the proof of Y can be accomplished by using the statement X.

Question 21

X: V is a vector space.

Y: V is a group.

Question 22

In the following statements, |x| refers to the absolute value

X: For all $x_1, x_2 \in R$, $|x_1 + x_2| \le |x_1| + |x_2|$.

Y: For all $x_1, x_2 \in R$, $|x_1 - x_2| \ge |x_1| - |x_2|$.

Question 23

X: For all $x_1, x_2 \in R$, $(x_1 - x_2)^2 \ge 0$.

Y: For all $x_1, x_2 \in R$, $x_1x_2 \le (x_1^2 + x_2^2)/2$.

本科目可以使用計算機

本科目試題共1頁

Question 24

Let $\{a_n\}_{n=1}^{\infty}$ be a sequence of real vectors, $a_n = (x_n, y_n)^T$ for $n \ge 1$. The magnitude of a_n is denoted as $||a_n||$ and it is defined as follows:

$$\|\mathbf{a}_n\| = \sqrt{x_n^2 + y_n^2}$$

X: $\lim_{n\to\infty} a_n$ exists.

Y: $\lim_{n\to\infty} ||\mathbf{a}_n||$ exists.

Question 25

For a sequence of real numbers $\{a_n\}_{n=1}^{\infty}$, in which $a_{n+1} = 0.8a_n + 1$ and $a_1 = 1$.

X: $\lim_{n\to\infty} a_n = 5$.

Y: $a_n \le 5$ and $a_{n+1} \ge a_n$ for all n.

Question 26

X: f(x) is differentiable in [a, b].

Y: f(x) is integrable in [a, b].

Question 27

X: Both $\lim_{n\to\infty} (a_n + b_n)$ and $\lim_{n\to\infty} (a_n - b_n)$ exist.

Y: Both $\lim_{n\to\infty} a_n$ and $\lim_{n\to\infty} b_n$ exist.

Question 28

X: Both $\lim_{n\to\infty} a_n b_n$ and $\lim_{n\to\infty} a_n/b_n$ exist.

Y: Both $\lim_{n\to\infty} a_n$ and $\lim_{n\to\infty} b_n$ exist.

Question 29

X: f(x) is differentiable in [a, b].

Y: f(x) is a continuous function in [a,b] and there exists $\xi \in [a,b]$ such that

$$f'(\xi) = \frac{f(a) - f(b)}{a - b}.$$

Question 30

X: $\int_0^\infty \exp(-\alpha x) dx = 1/\alpha$.

Y: $\int_0^\infty \exp(-\alpha x^2) dx = \sqrt{\pi/\alpha}.$

SECTION C: Short Questions

Remind that you only need to answer two questions in this section.

Question 31

Given a function f(x) defined as follows:

$$f_T(x) = \frac{1}{1 + \exp(-x/T)},$$
 (1)

where T is a positive constant. It has been shown by David C. Haley in 1952 that a cumulative normal distribution could be approximated by the above function, i.e.

$$\int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{z^2}{2}\right) dz \approx \frac{1}{1 + \exp(-\gamma x)}, \quad (2)$$

where $\gamma = 1.702$.

(a) Show that

$$f_T(x+\delta) \approx \int_{-\infty}^x \frac{1}{\sqrt{2\pi S_T}} \exp\left(-\frac{(z+\delta)^2}{2S_T}\right) dz,$$

where $S_T = \gamma^2 T^2$. [4 marks]

(b) Show that

$$= \frac{\delta^2}{S_N} + \frac{(\delta + z)^2}{S_T}$$

$$= \left(\frac{S_N + S_T}{S_N S_T}\right) \left(\delta + \frac{S_N}{S_N + S_T}z\right)$$

$$+ \frac{z^2}{S_N + S_T}.$$

[4 marks]

(c) Given that δ is a normal distributed random variable, i.e.

$$p(\delta) = \frac{1}{\sqrt{2\pi S_N}} \exp\left(-\frac{\delta^2}{2S_N}\right),\,$$

科目: 微積分

系所:科技管理研究所科技管理班甲組

本科目可以使用計算機

本科目試題共1頁

where S_N is a positive constant. By using the results in (a) and (b) together with the approximation (2), show that

$$\int_{-\infty}^{\infty} f_T(x+\delta)p(\delta)d\delta \approx f_T\left(\frac{x}{\alpha}\right),\,$$

where

$$\alpha = \sqrt{1 + \frac{S_N}{S_T}}.$$

That is to say,

$$\int_{-\infty}^{\infty} f_T(x+\delta)p(\delta)d\delta \approx \frac{1}{1+\exp(-x/(\alpha T))}$$

[10 marks]

(d) From (c), find the limit

$$\lim_{T\to 0} \int_{-\infty}^{\infty} f_T(x+\delta) p(\delta) d\delta$$

at x = 0. [2 marks]

Question 32

(a) Given a sequence of positive numbers, $\{a_1, \dots, a_n, \dots\}$, and $a_{n+1} < a_n$ for all n. Show that

$$\lim_{n\to\infty} a_n = 0$$

if $\lim_{n\to\infty} \sum_{k=1}^n a_k = K$, where K is a finite number. [8 marks]

(b) Given the following algorithm in which x_k is a random variable sampled from a population in which the population mean is zero and the range of the population is finite, i.e. $-L < x_k < L$. Moreover, $z_0 = 0$.

$$z_{n+1} = z_n - \frac{1}{n+1} (z_n - x_{n+1}).$$

Show that z_n is bounded for all $n \geq 0$. [4 marks]

- (c) Let $e_{n+1} = |z_{n+1} z_n|$. Show that e_n is bounded for all $n \ge 1$. [6 marks]
- (d) What is the value of z_n ? [2 marks]

Question 33

(a) Given two sets of real numbers $\{a_1, a_2, \dots, a_n\}$ and $\{b_1, b_2, \dots, b_n\}$. Show that

$$\left(\sum_{i=1}^n a_i b_i\right)^2 \leq \left(\sum_{i=1}^n a_i^2\right) \left(\sum_{j=1}^n b_j^2\right).$$

[10 marks]

(b) Given two differentiable functions f(x) and g(x) Show that

$$\left(\int_{a}^{b} f(x)g(x)dx\right)^{2} \le \left(\int_{a}^{b} f(x)^{2}dx\right)\left(\int_{a}^{b} g(x)^{2}dx\right).$$

[10 marks]