國立成功大學 107 學年度碩士班招生考試試題

編號: 374

系 所:經濟學系考試科目:總體經濟學

考試日期:0205,節次:3

第1頁,共4頁

※ 考生請注意:本試題不可使用計算機。 請於答案卷(卡)作答,於本試題紙上作答者,不予計分。

Problem 1 (Durable Consumption)

Consider a 2-period model with durable consumption goods. In this model, the durable consumption goods in period t continue to provide utility in period t+1. Therefore, the service flow households received from the consumption in period t+1 depends on the durable consumption in period t. In addition, durable consumption goods are assumed to depreciate at the rate $\delta \in (0,1)$. The following utility function describes household preferences:

$$U(C_t, C_{t+1}) = \ln(C_t) + \beta \ln (C_{t+1} + (1 - \delta)C_t),$$

where C_t and C_{t+1} are the consumption in periods t and t+1, respectively. β is the discount factor. Households receive endowments Y_t in period t and Y_{t+1} in period t+1. Denote B_{t+1} as the saving (or borrowing) from period t with a fixed interest rate given by t. Assume $B_t = B_{t+2} = 0$.

- 1. (5 points) Write down the household's budget constraints in period t and t+1, respectively.
- 2. (5 points) Combine the two constraints into an intertemporal budget constraint.
- 3. (5 points) Solve for the equilibrium C_t and C_{t+1} .
- 4. (5 points) Solve for B_{t+1} .
- 5. (5 points) Find the condition for δ such that B_{t+1} moves in the opposite direction of Y_t .
- 6. (5 points) Now suppose that $\delta = 1$, i.e., consumption is not durable. What is the sign of $\frac{\partial B_{t+1}}{\partial Y_t}$?

國立成功大學 107 學年度碩士班招生考試試題

系 所:經濟學系

考試科目:總體經濟學

考試日期:0205,節次:3

第2頁,共4頁

編號: 374

※ 考生請注意:本試題不可使用計算機。 請於答案卷(卡)作答,於本試題紙上作答者,不予計分。

Problem 2 (Solow Model)

Consider a Solow model where households require a subsistence level of consumption. Output is produced using capital and labor input via a Cobb-Douglas function:

$$Y_t = K_t^{\alpha} L_t^{1-\alpha},$$

where labor input L_t grows at a constant rate n, and capital K_t is accumulated according to

$$\frac{dK_t}{dt} = sY_t - \delta K_t,$$

and s is the saving rate, and δ is the depreciation rate.

Let $y_t = \frac{Y_t}{L_t}$ and $k_t = \frac{K_t}{L_t}$ be the output per capita and the capital per capita. The household does not save when income is lower than a threshold $\bar{y} = \bar{k}^{\alpha}$. However, the household saves a constant fraction \bar{s} if the income is above \bar{y} . Hence, the saving per capita is

$$sy_t = \begin{cases} 0 & \text{if } y_t < \bar{y} \\ \bar{s}(y_t - \bar{y}) & \text{if } y_t \ge \bar{y} \end{cases}$$

- 1. (5 points) Graph the saving rate against y_t .
- 2. (5 points) Write down the dynamic equation of capital per capita. Denote the changes in capital per capita as $\frac{dk_t}{dt}$.
- 3. (5 points) Write down the steady state condition.
- 4. (5 points) Plot a diagram depicting sy_t and $(n+\delta)k_t$. For comparison also plot the sy_t without subsistence $(\bar{y}=0)$.
- 5. (5 points) To ensure there exists a steady state, suppose that \bar{y} is not too large. Discuss how many steady states this model may have. Plot the corresponding diagram for each possible case.
- 6. (5 points) Based on the cases you discussed in Question 5, characterize which steady state the economy may converge to given different values of initial capital.

國立成功大學 107 學年度碩士班招生考試試題

系 所:經濟學系

考試科目:總體經濟學

考試日期:0205,節次:3

第3頁,共4頁

374

編號:

※ 考生請注意:本試題不可使用計算機。 請於答案卷(卡)作答,於本試題紙上作答者,不予計分。 Problem 3 (Money in the Utility)

Consider a 2-period model in which both consumption c and money holding m^d provide utility directly. The representative household's utility function is given by:

$$U\left(c_t, c_{t+1}, \frac{m_t^d}{p_t}\right) = \ln c_t + \ln\left(\frac{m_t^d}{p_t}\right) + \beta \ln c_{t+1},$$

where β is the discount factor, and p_t denotes the money price of consumption goods which is taken as given. With the exogenous real income y_t and y_{t+1} , the household pays tax T_t and T_{t+1} and consumes goods and holds money. Assume $y_t > T_t$ for all period t. Meanwhile, the household also saves in government bonds b_t^d and earns nominal return on bonds i_t .

Thus the household's first-period budget constraint in nominal terms is:

$$p_t c_t + p_t b_t^d + m_t^d = p_t y_t - p_t T_t,$$

and the second-period budget constraint in nominal terms is:

$$p_{t+1}c_{t+1} = p_{t+1}y_{t+1} + (1+i_t)p_tb_t^d + m_t^d - p_{t+1}T_{t+1}.$$

Government raises revenue via taxes and issue government bonds and money to support expenditure G. Hence, government's budget constraints in period t and t+1 are:

$$p_t G_t = p_t T_t + p_t b_t^s + m_t^s$$

$$p_{t+1}G_{t+1} + (1+i_t)p_tb_t^s = p_{t+1}T_{t+1}$$

- 1. (5 points) Using the Fisher equation to write down the real intertemporal budget constraint.
- 2. (5 points) Derive the first order conditions of the consumer's utility maximization problem.
- 3. (5 points) Find the money demand function

$$\frac{m_t^d}{p_t} = m(i_t, y_t, \ldots).$$

4. (5 points) Show that

$$\frac{\partial m(i_t, y_t, \ldots)}{\partial i_t} < 0.$$

5. (5 points) Show that

$$\frac{\partial m(i_t, y_t, \ldots)}{\partial y_t} > 0.$$

6. (5 points) Define the competitive equilibrium for this economy.

編號: 374

國立成功大學 107 學年度碩士班招生考試試題

系 所:經濟學系 考試科目:總體經濟學

考試日期:0205,節次:3

第4頁,共4頁

※ 考生請注意:本試題不可使用計算機。 請於答案卷(卡)作答,於本試題紙上作答者,不予計分。

Problem 4 (Search)

Consider a search model of the labor market. All jobs on the market are the same and pay a wage of w units of consumption. Unemployed workers get b < w in unemployment benefit, and search a job with the job finding rate being 50%. Employed workers earn wage w, but may get fired at a separation rate of 50%. Workers have linear preference over consumption: U(C) = C, and discount the future with factor $\beta = 1/2$.

- 1. (5 points) The equilibrium unemployment rate, denoted as u, occurs when flows into and out of unemployment are equal. Find the equilibrium unemployment rate u.
- 2. (5 points) Denote V_e and V_u as the life-time value (i.e., the total expected discounted utility) of an employed worker and an unemployed worker, respectively. Write down the relationship between V_e and V_u . Find the values V_e and V_u .

Hint: Suppose the life-time value function is V, then it can be expressed recursively as:

$$V = U(C) + \beta E[V'],$$

where V and $V' \in \{V_e, V_u\}$.