系 所:企業管理學系

考試科目:統計學

第/頁,共 / 頁

考試日期:0206,節次:3

※ 考生請注意:本試題不可使用計算機。 請於答案卷(卡)作答,於本試題紙上作答者,不予計分。

- I. (28 points, 4 points each) Choose the most appropriate answer.
- 1. Let X be a Poisson random variable with $E(X)=\mu$, median $\tilde{\mu}$ and mode μ^* . Then
 - (a) $\mu < \tilde{\mu} < \mu^*$
 - (b) $\mu^* < \tilde{\mu} < \mu$
 - (c) $\tilde{\mu} < \mu < \mu^*$
 - (d) $\mu < \mu^* < \tilde{\mu}$
 - (e) None of the above.
- 2. Let (X_i, Y_i) , i=1,2,...,n, be n pairs of random vectors, the Pearson sample correlation coefficient r is found to be 0.88, then
 - (a) Strong linear association exists for X and Y.
 - (b) The available information is not sufficient to claim the existence of linear association for X and Y.
 - (c) If r is found to be 0 or near 0, then we can conclude that no relationship exists for X and Y.
 - (d) True for (a), (c).
 - (e) True for all the above (a), (b), (c), (d).
- 3. Let p_1 and p_2 be the proportions for some characteristic in populations 1 and 2. Random samples with size n_1 and n_2 , respectively, are drawn from the two populations and found the sample proportions are \hat{p}_1 , \hat{p}_2 . We are interested in testing H_0 : $p_1 = p_2$.
 - (a) The test statistic t should be taken to be

$$t = \frac{\hat{p}_1 - \hat{p}_2}{\sqrt{\frac{\hat{p}_1(1 - \hat{p}_1)}{n_1} + \frac{\hat{p}_2(1 - \hat{p}_2)}{n_2}}}$$

(b) The test statistic

$$t = \frac{\hat{p}_1 - \hat{p}_2}{\sqrt{\hat{p}(1-\hat{p})\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}},$$

where $\hat{p} = \frac{n_1 \hat{p}_1 + n_2 \hat{p}_2}{n_1 + n_2}$, is better than the one in (a).

- (c) The test statistic in (b) is also good for the test H_0 : $p_1-p_2=d_0$ vs H_a : $p_1-p_2\neq d_0$, where d_0 is some known value.
- (d) The test statistic in (a) is also good if n_1+n_2 is large enough.
- (e) The above (a),(b),(d) are correct.

系 所:企業管理學系

262

考試科目:統計學

編號:

考試日期:0206,節次:3

第つ頁,共行頁

※ 考生請注意:本試題不可使用計算機。 請於答案卷(卡)作答,於本試題紙上作答者,不予計分。

- 4. Two independent random samples are drawn from N(μ_1 , σ_1^2) and N(μ_2 , σ_2^2) with sizes $n_1=10$, $n_2=16$, respectively. It is found that $\overline{x_1}=8$, $\overline{x_2}=5$, $s_1^2=3.5$, $s_2^2=1$.
 - (a) The random variable $\frac{s_1^2/\sigma_1^2}{s_2^2/\sigma_2^2}$ can be used to construct confidence interval for $\frac{\sigma_1^2}{\sigma_2^2}$ by using F random variable with 9 and 15 degrees of freedom.
 - (b) Based on the results in (a), the test H_0 : $\mu_1=\mu_2$ would be concluded if $\alpha=0.05$.
 - (c) Based on the results in (a), to test H_0 : $\mu_1 = \mu_2$, the test statistic to be used is a t with 26 degrees of freedom.
 - (d) True for all above (a),(b),(c) and (d).
 - (e) None of the above.
- 5. Consider the paired data: (x_1, y_1) , (x_2, y_2) ,..., (x_n, y_n) and we want to compare the means of X and Y, μ_x , μ_y . Suppose we have \overline{x} , \overline{y} , S_x^2 , S_y^2 and r, the sample correlation coefficient, where S_x^2 and S_y^2 are the unbiased estimators for σ_x^2 , σ_y^2 , and r is positive.
 - (a) To test H_0 : $\mu_x=\mu_y$, the test statistic $t=\frac{(\overline{x}-\overline{y})}{\sqrt{\frac{s_x^2+s_y^2}{n}}}$ is a good choice.
 - (b) Let $d_i=x_i-y_i$, the test statistic $t_d=\frac{(\overline{x}-\overline{y})}{s_d\sqrt{\frac{1}{n}}}$ is a better choice than the t in
 - (a) because $S_d^2 < S_x^2 + S_y^2$, where S_d is the sample standard deviation of d_i .
 - (c) Since $S_d^2 = S_x^2 + S_y^2 2S_{xy}$, S_{xy} has to be given so that t_d in (b) can be computed, where S_{xy} is the sample covariance of X and Y.
 - (d) True for the above (b) and (c).
 - (e) None of the above.
- 6. Let $X_1, X_2, ..., X_n$, $n \ge 4$, be i.i.d. sample from some population with finite variance σ^2 . Which of the following estimators is unbiased for σ^2 and has the smallest

variance?
$$(\overline{X} = \sum_{i=1}^{n} X_i / n, \ \overline{X}_1 = \frac{\sum_{i=1}^{n_1} X_i}{n_1}, \ \overline{X}_2 = \frac{\sum_{i=n_1+1}^{n} X_i}{n_2}, \ n_1 + n_2 = n, \ n_1, \ n_2 \ge n$$

系 所:企業管理學系

考試科目:統計學

第3頁,共5頁

考試日期:0206,節次:3

※ 考生請注意:本試題不可使用計算機。 請於答案卷(卡)作答,於本試題紙上作答者,不予計分。

- (a) $X_1^2 X_2 X_3$
- (b) $S^2 = \sum_{i=1}^n (X_i \bar{X})^2 / (n-1)$
- (c) $(X_1 X_2)^2/2$
- (d) $\hat{\sigma}^2 = \sum_{i=1}^n (X_i \bar{X})^2 / n$
- (e) $\left[\sum_{i=1}^{n_1} (X_i \overline{X}_1)^2 + \sum_{i=n_1+1}^n (X_i \overline{X}_2)^2\right] / (n_1 + n_2 2)$.
- 7. One box contains 1 red ball and 4 white balls. Three persons are to draw one ball from the box in order. Let X_i , i=1.2.3, be the outcome for person i that draws the red ball.
 - (a) Each person, no matter his order in drawing ball from the box, has the same probability in drawing the red ball, $E(X_i)=1/4$.
 - (b) The variances of each X_i are equal, which is 3/16.
 - (c) The X_i , i=1.2.3, are identically distributed random variables.
 - (d) The probability of drawing a red ball of the second person depends on the outcome of the first person.
 - (e) True for all the above.
- II. (12 points, three points each) For the following statements, cycle T for true and F for false.
- 1. Let A, B be sets in sample space S, \emptyset be empty set to S.
- (a) T F Sets A and Ø are mutually exclusive,
- (b) T F If A and B both are not empty sets, then they cannot be independent and must be mutually exclusive.
- 2. T F The skewness of a Poisson distribution is always positive. It cannot be negative.
- 3. T F Let X be an exponential distribution with parameter μ . Then the skewness of X, like normal distribution, can be zero, positive, or negative.

III. (60 points) Fill in the blanks for each problem.

- 1. (8 points, 4 points each)
 - (a) The maximal value for the variance of a Bernoulli random variable with probability of success is <u>(A)</u>.

編號: 262 國立成功大學107學年度碩士班招生考試試題

系 所:企業管理學系

考試科目: 統計學

第4頁,共5頁

考試日期:0206,節次:3

- ※ 考生請注意:本試題不可使用計算機。 請於答案卷(卡)作答,於本試題紙上作答者,不予計分。
 - (b) In a survey sampling, what is the smallest sample size <u>(B)</u> required if the margin of error (suppose α is 0.05) in estimating the population proportion p being set to be less than 0.03? Assume 0.2 \leq p \leq 0.4.
 - 2. (10 points, two point each) A sample with size n=27 is obtained with \hat{y} =1.2-0.8x, SSE (sum of squares due to error)=150, SSR (sum of squares due to regression)=24. Then R^2 (coefficient of determination)=___(C)___, correlation coefficient of Y_i and the predicted value \hat{Y}_i =___(D)____, correlation coefficient of Y_i and X_i =__(E)__, t=__(F)___ with___(G)___ degrees of freedom.
 - 3. (3 points, one point each) Let X be a random variable taking two values 1 and 0, with $P(X=1) = \frac{3}{8}$; Y be another random variable taking two values 10 and 20, with $P(Y=10) = \frac{1}{4}$. It is known that $P(X=1, Y=10) = \frac{3}{32}$. Fill in the blanks for the following table

		Y		
		10	20	
x	0	(<u>H</u>)	(<u>I</u>)	
	1	3/32	(_1_)	3/8
		1/4		

- 4. (12 points, one point each) Let $X_1, X_2, ..., X_n$ be independent, identical distributed Bernoulli random variables with probability of success E(X) = p.
 - (a) If $Y = \sum_{i=1}^{n} X_i$, then Y follow (K) distribution with mean (L) and variance (M).
 - (b) (continued) If sample size n large, but p small, n×p constant, then Y approximates to a (N) distribution with mean (O), variance (P). If n×p is not small, say n×p≥10, the distribution can be, in turn, approximated by (Q) distribution with mean (R), and variance (S).

系 所:企業管理學系

262

考試科目:統計學

第5頁,共与頁

考試日期:0206,節次:3

※ 考生請注意:本試題不可使用計算機。 請於答案卷(卡)作答,於本試題紙上作答者,不予計分。

- (c) For binomial, if p is not too extreme, say 0.2≤p≤0.8, the probability distribution can be approximated by a (T) distribution with mean_ (U) and variance (V).
- 5. (27 points, three points each) The following data are collected to examine the existence of treatment effect:

Treatment					
1	2	3			
8	14	10			
7	16	12			
9	12	16			
13	17	15			

(a) Fill in the blanks for the following ANOVA table

	SS	df	MS	F	
SSB	(_W_)			(<u>Y</u>)	
SSE	(<u>X</u>)				

Suppose the treatment effect does exist, and we want to know which of the differences, $\mu_1 - \mu_2$, $\mu_1 - \mu_3$, $\mu_2 - \mu_3$, contribute to the rejection of H_0 : $\mu_1 = \mu_2 = \mu_3$ (μ_i : mean of treatment *i*) at α =0.05. Give, respectively, the 95% joint confidence intervals for $\mu_1 - \mu_2$:____(Z)___, $\mu_1 - \mu_3$:____(Z1)___, $\mu_2 - \mu_3$:____(Z3)___.

(b) Apply Tukey's method to obtain a joint 95% confidence intervals for $\mu_1 - \mu_2$: (Z4) , $\mu_1 - \mu_3$: (Z5) , $\mu_2 - \mu_3$: (Z6) . It is known, in this case, that $q_{0.05}(k,df)=3.95$.

$$\begin{split} F_{9,15}(0.975) &= 0.265, \ F_{9,15}(0.95) = 0.327, \ F_{9,15}(0.05) = 2.59, \\ F_{9,15}(0.025) &= 3.12 \\ t_{12}(0.05) &= 1.782, \ t_{12}(0.025) = 2.179, t_{12}(0.01) = 2.681, \\ t_{9}(0.05) &= 1.833, \ t_{9}(0.025) = 2.262, t_{9}(0.01) = 2.821. \end{split}$$