國立中正大學 107 學年度碩士班招生考試試題系所別:經濟學系國際經濟學-甲組、乙組 科目:統計學

第 3 節

第1頁,共入頁

Part I:填空題(每格5分,共50分)

注意事項:

- (1) 此部分不須計算過程。
- (2) 請不要使用「選擇題作答區」作答。
- (3) 請自行於作答區第一頁「選擇題作答區」的下面製作如下的填空題作答區:

(a)	(b)	(c)	(d)	(e)
(f)	(g)	(h)	(i)	(j)
	1			

1. Let X and Y be two random variables. Suppose that

$$E(X|Y)=1.5+0.5Y,\ Var(X|Y)=0.75Y^2,\ E(Y)=0,\ \ and\ \ E(Y^2)=1.$$
 Then we can obtain that $E(X)=$ _____(a)____, $Var(X)=$ _____(b)____, and $Cov(X,Y)=$ _____(c)___. Now suppose that $E(Y|X)=\alpha+\beta X$, where α and β are two non-stochastic parameters. Then $\alpha=$ _____(d)___ and $\beta=$ _____(e)___.

2. Let $X_i \sim \text{i.i.d.} N(0,1)$, $i=1,\ldots,n$. Also let $f(x_1,\ldots,x_n)$ be the corresponding joint probability density function. Then $f(x_1,\ldots,x_n)=$ _____(f) ____. Consider the sample mean: $\bar{X}_n=n^{-1}\sum_{i=1}^n X_i$. We can find that $E(\bar{X}_n)=$ _____(g) ____ and $E[\sum_{i=1}^n (X_i-\bar{X}_n)^2]=$ ______(h) ____. Now suppose that M(t) is the moment generating function of \bar{X}_n . Then M(t)= ______(i) ____. Let $Y_1 < Y_2 < \cdots < Y_n$ be the order statistics of X_1,\ldots,X_n . Suppose that $g(y_n)$ is the probability density function of Y_n . Then $g(y_n)=$ ______(j) ____.

國立中正大學 107 學年度碩士班招生考試試題系所別:經濟學系國際經濟學-甲組、乙組 科目:統計學

第3節

第2頁,共2頁

Part II:計算問答說明題(50分)

Note: You should carefully state the reasons or calculations in the following questions in order to get the points. A short answer, such as "Yes" or "No" will NOT receive any point.

1. Consider the simple linear regression model $Y_i = \beta_0 + \beta_1 X_i + u_i$, i = 1, ..., n. Assume all the general assumptions hold for the linear regression. Let

$$Y = \begin{pmatrix} Y_1 \\ \vdots \\ Y_n \end{pmatrix}, \ X = \begin{pmatrix} 1 & X_1 \\ \vdots & \vdots \\ 1 & X_n \end{pmatrix}, \ u = \begin{pmatrix} u_1 \\ \vdots \\ u_n \end{pmatrix} \text{ and } \beta = \begin{pmatrix} \beta_0 \\ \beta_1 \end{pmatrix},$$

then the matrix form of the model is $Y=X\beta+u$, where $Var(u)=\sigma^2I_n$. The ordinary least squares (OLS) estimator of β is

$$\hat{\beta} = \begin{pmatrix} \hat{\beta}_0 \\ \hat{\beta}_1 \end{pmatrix} = (X^T X)^{-1} X^T Y.$$

- (a) Find $(X^{T}X)^{-1}$ and $X^{T}Y$. (10%)
- (b) Use the result from (a) to show that $\hat{\beta}_0 = \overline{Y} \hat{\beta}_1 \overline{X}$. (10%)
- (c) Given the matrices $\hat{\beta}$, Y and $X^{\mathrm{T}}Y$, how can we use them to compute the coefficient of determination R^2 ? (10%)
- (d) Show that $Var(\hat{\beta}) = \sigma^2 (X^T X)^{-1}$. (10%)
- (e) If we want to test the hypothesis $H_0: \beta_0 + \beta_1 = 1$ against the alternative hypothesis $H_1: \beta_0 + \beta_1 \neq 1$. How can we use the above result to conduct the test? Please be specific about the test statistics. (10%)