考試科目基礎製學系所別統計學矣 考試時間 2月2日(五)第一節

- 1. (12pts). For each of the following statements, determine whether it is true or false. (True or false questions. Do not give explanation)
 - (a) Let A and B be both square matrices of the same size. Then rank(AB) = rank(BA).
 - (b) Suppose V is a vector space of dimension n and $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n \in V$. Then $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ is linear independent if and only if $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ spans V.
 - (c) Let $f:[0,1] \longrightarrow \mathcal{R}$. If $\lim_{n\to\infty} \sum_{k=1}^n f(\frac{k}{n})(\frac{1}{n})$ exists, then f is Riemann integrable on [0,1] and $\int_0^1 f(x) dx = \lim_{n\to\infty} \sum_{k=1}^n f(\frac{k}{n})(\frac{1}{n})$.
 - (d) Let $F(x,y): \mathbb{R}^2 \longrightarrow \mathbb{R}$ and $f: \mathbb{R} \longrightarrow \mathbb{R}$ be defined by f(t) = F(2t,t). If the partial derivatives of F, F_x and F_y , exist and are continuous, then f is differentiable and $f'(t) = 2F_x(2t,t) + F_y(2t,t)$.
- 2. (15pts). Please find $\lim_{x\to 0^+}(\cos x 1)\ln x$. Show your work.
- 3. (15pts). Please find the volume of the solid that lies under the paraboloid $z = x^2 + y^2$, above the x-y plane, and between the two cylinders $x^2 + y^2 = 1$ and $x^2 + y^2 = 2$. Show your work.
- 4. Let $V = \{p(t) : p(t) = a_0 + a_1 t \text{ defined on } [-1,1] \text{ for some } a_0, a_1 \in \mathcal{R} \}$ and $W = \{q(t) : q(t) = b_0 + b_1 t + b_2 t^2 \text{ defined on } [-1,1] \text{ for some } b_0, b_1, b_2 \in \mathcal{R} \}$. Note V and W are vector spaces and having natural bases $S = \{p_1(t) = 1, p_2(t) = t\}$ and $T = \{q_1(t) = 1, q_2(t) = t, q_3(t) = t^2\}$ respectively. Consider the linear transformation $L: V \longrightarrow W$ defined by $L(p(t))(t) = \int_{-1}^{t} p(x) dx$.
 - (a) (12pts). Please find $[L(p_1(t))]_T$ and $[L(p_2(t))]_T$, the coordinate vectors of $L(p_1(t))$ and $L(p_2(t))$ with respect to the ordered basis T. Show your work.
 - (b) (6pts). Please find the matrix representing L with respective to the bases S and T.

註

一、作答於試題上者,不予計分。

國立政治大學 10 7 學年度 發生班 招生考試試題 發抗腹阜班

第)頁,共)頁

考試科目其改製 系所别 长克計學生 考試時間 2月2日(五)第一節

- 5. Consider this quadratic function of two variables $f(x,y) = x^2 + 6xy + y^2 6xy + 6x$ 14x - 10y.
 - (a) (10pts). Please find $x_0, y_0, c \in \mathcal{R}$ and a 2×2 symmetric matrix A such that $f(x,y) = \begin{bmatrix} x - x_0 & y - y_0 \end{bmatrix} A \begin{bmatrix} x - x_0 \\ y - y_0 \end{bmatrix} + c$. Show your work.
 - (b) (10pts). Is the matrix A in (a) positive definite, negative definite, or neither p.d. nor p.d.? Give your reason.
- 6. Let V be the subspace of \mathbb{R}^4 with basis $S = \{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$, where $\mathbf{v}_1 = \begin{bmatrix} -1 \\ 0 \end{bmatrix}$,

$$\mathbf{v}_2 = \begin{bmatrix} 3 \\ -1 \\ 2 \\ 1 \end{bmatrix}, \ \mathbf{v}_3 = \begin{bmatrix} 2 \\ -1 \\ -2 \\ -3 \end{bmatrix}. \text{ Also let } \mathbf{w} = \begin{bmatrix} -1 \\ -3 \\ 2 \\ 5 \end{bmatrix}.$$

- (a) (10pts). Please apply the Gram-Schmidt process on S to generate an orthonormal basis for V. Show your work.
- (b) (10pts). Please find $\mathbf{v} \in V$ and $\mathbf{u} \in V^{\perp}$ such that $\mathbf{w} = \mathbf{v} + \mathbf{u}$. Show your work.