題號: 296 國立臺灣大學 107 學年度碩士班招生考試試題 科目:統計理論

節次: 2

題號: 296 共 2 頁之第 | 頁

1. Let X_1, X_2, \ldots, X_n be i.i.d. Poisson distribution with mean λ .

- (a) (5 points) Find the moment-generating function of X_1 .
- (b) (10 points) Find the uniformly minimum variance unbiased estimator (UMVUE) of $(\lambda 1)(\lambda 2)$.
- (c) (10 points) Let X be the Poisson distribution with mean λ and the conditional distribution of Y given X = x be the binomial distribution with size x and probability p. Show that the marginal distribution of Y is the Poisson distribution with mean $p\lambda$.
- 2. (10 points) Let Y_1, Y_2, \ldots, Y_n be a random sample from the uniform distribution on the interval $(0, \theta)$ with an unknown parameter $\theta \in (1, \infty)$. Suppose that we only observe

$$X_i = \begin{cases} Y_i & \text{if} \quad Y_i \ge 1\\ 1 & \text{if} \quad Y_i < 1 \end{cases}$$

for i = 1, ..., n. Find a moment estimator of θ .

- 3. Let X_1, X_2, \ldots, X_n be a random sample from the uniform distribution on the interval $(\theta, \theta + |\theta|)$. Find the maximum likelihood estimator (MLE) of θ when
 - (a) (5 points) $\theta \in (0, \infty)$.
 - (b) (5 points) $\theta \in (-\infty, 0)$
 - (c) (5 points) $\theta \in \mathbb{R}$, $\theta \neq 0$.
- 4. Let X_1, X_2, \ldots, X_n denote a random sample from $N(\theta, 36)$.
 - (a) (5 points) Obtain the likelihood ratio test for testing $H_0: \theta = \theta'$ versus $H_1: \theta \neq \theta'$, where θ' is a specified constant.
 - (b) (5 points) Is the test derived in (1a) a uniformly most powerful test?
- 5. Let $X_{(1)}, X_{(2)}, \ldots, X_{(n)}$ denote the order statistics of a random sample X_1, X_2, \ldots, X_n from the uniform distribution $U(\theta, \theta + 1)$, where θ is a real number.
 - (a) (10 points) Does the family of all possible joint distributions of $(X_{(1)}, X_{(n)})$ have monotone likelihood ratio?

題號: 296

國立臺灣大學 107 學年度碩士班招生考試試題

科目:統計理論

節次: 2 共 2 頁之第 2 頁

296

(b) (10 points) When the nominal level is set at α , find a uniformly most powerful test for testing $H_0: \theta \leq 0$ versus $H_1: \theta > 0$.

- 6. Let $X_1, X_2, \ldots, X_{n_1}$ and $Y_1, Y_2, \ldots, Y_{n_2}$ denote independent random samples from the normal distributions $N(\mu_1, \sigma_1^2)$ and $N(\mu_2, \sigma_2^2)$, respectively. The sample means and sample variances are denoted by \bar{X} , \bar{Y} , S_1^2 and S_2^2 , respectively.
 - (a) (15 points) Show that the distribution of random quantity

$$Q = \frac{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$$

can be approximated by a chi-squared distribution, and obtain its corresponding effective degrees of freedom δ .

(b) (5 points) Assume that $\sigma_1^2 \neq \sigma_2^2$, the following test statistic

$$t = \frac{\bar{X} - \bar{Y}}{\sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}}$$

is frequently used for assessing $H_0: \mu_1 = \mu_2$ versus $H_1: \mu_1 \neq \mu_2$. Show that the distribution of t can be approximated by a t-distribution with δ degrees of freedom.

試題隨卷繳回