國立臺灣大學 107 學年度碩士班招生考試試題

題號: 105 105 科目:機率統計 頁之第 節次: 2

1. (15%) You roll a fair die ten times. Let X be the number of six in the first four rolls, and let Y be the total number of six. Determine Cov(X, Y),

2. (25%) Let X_1, X_2, \ldots, X_n and Y_1, Y_2, \ldots, Y_n be independent random samples from exponen tial distributions with pdfs

$$f_X(x) = \lambda_1 \exp(-\lambda_1 x), x > 0$$
 and $f_Y(y) = \lambda_2 \exp(-\lambda_2 y), y > 0$

respectively. It is known that $\lambda_1 \leq \lambda_2$.

- (a) (15%) Find the MLEs of λ_1 , $\hat{\lambda}_1$, and λ_2 , $\hat{\lambda}_2$. Give reasons for your answer.
- (b) (10%) Derive the asymptotic distribution of $\hat{\lambda}_1$.
- 3. (20%) Suppose you fit the model $Exponential(\lambda)$ to data x_1, \dots, x_n by computing the MLE $\hat{\lambda} = 1/\bar{x}$. Here $\bar{x} = \sum_{i=1}^n x_i/n$. But the true distribution of the data X_1, \dots, X_n are in dependent and identically distributed with Gamma(2,1). You may use the fact that if $X \sim Gamma(\alpha, \beta)$, then $E(X) = \alpha/\beta$ and $Var(X) = \alpha/\beta^2$. Show directly, using the Law of Large Numbers, to find the limit of $\hat{\lambda}$ as n goes to the infinity.
- 4. (20%) A lot consisting of N hard disks contains D defectives, where D is an unknown number. A sample of size n will be selected, without replacement, and the number of defects, X, is obtained.
 - (a) (8%) Specify the family of distribution $P_D(X=x)$, $0 \le D \le N$.
 - (b) (12%) Propose a test for testing $H_0: D \leq D_0$ versus $H_a: D > D_0$.
- 5. (20%) Suppose that the random variables Y_1, Y_2, \dots, Y_n satisfy

$$Y_i = \beta x_i + \epsilon_i$$

for $i=1,2,\cdots,n$. Here x_1,x_2,\cdots,x_n are known constants, β is an unknown regression pa rameter, and $\epsilon_1, \dots, \epsilon_n$ are independent and identically distributed N(0,1) random variables.

- (a) (5%) Find the Maximum Likelihood estimator of β , call it $\hat{\beta}$.
- (b) (5%) Construct the Likelihood Ratio Test statistics for testing $H_0: \beta = 0$ versus $H_a:$ $\beta \neq 0$ and show that the Likelihood Ratio Test statistic can be written in such a way that it involves the data, Y_1, \dots, Y_n , only through $T = \hat{\beta}^2(Y_1, \dots, Y_n)$.
- (c) (5%) Find the distribution of T under H_0 .
- (d) (5%) Suppose that n = 100, $\sum_{i=1}^{100} x_i^2 = 10$ and $\sigma^2 = 4$. Give the exact rejection region of size 0.10 Likelihood Ratio Test in terms of T. (Note that P(Z > 1.645) = 0.05 when $Z \sim N(0,1)$.)