國立彰化師範大學106學年度項士班招生考試試題						
系	所:	数學系	組別:用組	科目:	機率與統計	
☆	☆請在答	案紙上作答☆☆			共2頁,第1頁	
1.	Suppose $P(X_n \ge $	X_1, X_2, \cdots are independent 2) $\rightarrow 1 - 2e^{-1}$ as n	endent random variables with $\rightarrow \infty$. (20%)	$X_n \sim \operatorname{Bin}(n, \frac{1}{n}), n =$	1,2, Prove that	
2.	Suppose	$X \sim U(-2,1)$. Let $Y =$	$\frac{X^2}{4}$. Find the distribution of <i>Y</i> .	. (15%)		
3.	There as $i = 1,2,$ probabil	re <i>n</i> coins in a box. …, <i>n</i> . A coin is randonity that the first two fli	When flipped, the <i>i</i> th coin with the the coin with the box and the box and the box here the the the the the the the the the th	will turn up heads I is then repeatedly f %)	with probability $\frac{i}{n}$, flipped. What is the	
4.	Let X_1 , Is $\hat{\theta}$ and UMVUE	X_2, \dots, X_n be a rando a uniformly minimum E of θ ? (15%)	m sample from Unif $(0, \theta)$, θ : variance unbiased estimate of	> 0. Determine the N $ heta$? Why? Can we	ALE $\hat{\theta}$ of θ . adjust $\hat{\theta}$ to be an	

國立彰化師範	大學106學年度 <u>碩</u>	<u>士班</u> 招生考試試題				
系所: <u>數學系</u>	組別: <u>甲組</u>	科目:機率與統計				
☆☆請在答案紙上作答☆☆		共2頁,第2頁				
5. Let X_1, X_2, \dots, X_n be a random sample with strictly increasing population distribution						
function F, and let $X_{(k)}$ be the k-th order statistic of the X_i' , $1 \le i \le n$. For $0 , let x_p$						
be the p -th quantile of F . (20%)						
(a) Show that $[X_{(i)}, X_{(i)}]$	(a) Show that $[X_{(i)}, X_{(j)}]$ is a confidence interval for x_p with confidence level					
$\sum_{k=i}^{j-1} \binom{n}{k} p^k (1-p)^{n-k}, \ 1 \le i < j \le n-1.$ This probability is referred to as probability of converge of						
x_p .						
(b) Find the coverage pr	robability for the interval $[X_{(4)},$	$X_{(6)}$] for the median of the sample				
provided $n = 10$.						

6. Consider two independent random samples X_1, \dots, X_n and Y_1, \dots, Y_m with variances σ_1^2 and σ_2^2 ,

respectively, where $m, n \ge 2$. Define $S_1^2 = \sum_{i=1}^n (X_i - \overline{X})^2 / n$ and $S_2^2 = \sum_{j=1}^m (Y_j - \overline{Y})^2 / m$. (15%)

(1) If we'd like to use F-testing to test the hypothesis $H_0: \sigma_1 = \sigma_2$ v.s. $H_1: \sigma_1 \neq \sigma_2$, what additional assumptions should we add to the distributions of the two independent random samples ?

(2) If n = 10, m = 8, $s_1^2 = 25, s_2^2 = 32$, what is the outcome of the hypothesis testing in problem (a) ?