國立彰化師範大學106學年度碩士班招生考試試題

\qquad組別：甲組科目：機率與統計

1．Suppose X_{1}, X_{2}, \cdots are independent random variables with $X_{n} \sim \operatorname{Bin}\left(n, \frac{1}{n}\right), n=1,2, \cdots$ ．Prove that $\mathrm{P}\left(X_{n} \geq 2\right) \rightarrow 1-2 e^{-1}$ as $n \rightarrow \infty$ ．（20\％）

2．Suppose $X \sim \mathrm{U}(-2,1)$ ．Let $Y=\frac{X^{2}}{4}$ ．Find the distribution of Y ．（ 15% ）

3．There are n coins in a box．When flipped，the i th coin will turn up heads with probability $\frac{i}{n}$ ， $i=1,2, \cdots, n$ ．A coin is randomly selected from the box and is then repeatedly flipped．What is the probability that the first two flips both result in heads？（15\％）

4．Let $X_{1}, X_{2}, \cdots, X_{n}$ be a random sample from $\operatorname{Unif}(0, \theta), \theta>0$ ．Determine the MLE $\hat{\theta}$ of θ ． Is $\hat{\theta}$ an uniformly minimum variance unbiased estimate of θ ？Why？Can we adjust $\hat{\theta}$ to be an UMVUE of θ ？（15\％）

國立彰化師範大學106學年度碩士班招生考試試題

系所：數學系

組別：甲組
科目：機率與統計
认請在答案紙上作答えふ
共 2 頁，第 2 頁
5．Let $X_{1}, X_{2}, \cdots, X_{n}$ be a random sample with strictly increasing population distribution
function F ，and let $X_{(k)}$ be the k－th order statistic of the $X_{i}{ }^{\prime}, 1 \leq i \leq n$ ．For $0<p<1$ ，let x_{p} be the p－th quantile of F ．（ 20% ）
（a）Show that $\left[X_{(i)}, X_{(j)}\right]$ is a confidence interval for x_{p} with confidence level $\sum_{k=i}^{j-1}\binom{n}{k} p^{k}(1-p)^{n-k}, 1 \leq i<j \leq n-1$ ．This probability is referred to as probability of converge of x_{p}.
（b）Find the coverage probability for the interval $\left[X_{(4)}, X_{(6)}\right]$ for the median of the sample provided $n=10$ ．

6．Consider two independent random samples X_{1}, \cdots, X_{n} and Y_{1}, \cdots, Y_{m} with variances σ_{1}^{2} and σ_{2}^{2} ， respectively，where $m, n \geq 2$ ．Define $S_{1}^{2}=\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2} / n$ and $S_{2}^{2}=\sum_{j=1}^{m}\left(Y_{j}-\bar{Y}\right)^{2} / m$ ．
（1）If we＇d like to use F－testing to test the hypothesis $H_{0}: \sigma_{1}=\sigma_{2}$ v．s．$H_{1}: \sigma_{1} \neq \sigma_{2}$ ，what additional assumptions should we add to the distributions of the two independent random samples ？
（2）If $\mathrm{n}=10, \mathrm{~m}=8, s_{1}^{2}=25, s_{2}^{2}=32$ ，
what is the outcome of the hypothesis testing in problem（a）？

