國立彰化師範大學106學年度碩士班招生考試試題

系所: 電子工程學系(乙組選考戊)、

資訊工程學系(選考乙)、

資訊工程學系積體電路設計碩士班(選考戊)

☆☆請在答案紙上作答☆☆

共2頁,第1頁

科目: 離散數學

- 1. Construct the truth table for the following propositions. (10%)
 - (a) $p \leftrightarrow q$
 - (b) $\neg p \rightarrow (q \rightarrow r)$
- 2. (a) Prove that $1 \cdot 2 + 2 \cdot 3 + 3 \cdot 4 + \cdots + (n-1) \cdot n$ is $O(n^3)$. (7%)
 - (b) Give a good big-O estimate for: $n^{2^n} + n^{n^2}$. (3%)
- 3. Suppose $A = \{a, b, c\}$. Mark the following statement TRUE or FALSE. (8%)
 - (a) $\{b, c\} \in P(A)$.

(e) $\emptyset \subseteq A \times A$.

(b) $\{\{a\}\}\subseteq P(A)$.

(f) $\{a, c\} \in A$.

(c) $\emptyset \subseteq A$.

(g) $\{a, b\} \in A \times A$.

(d) $\{\emptyset\} \subseteq P(A)$.

- (h) $(c, c) \in A \times A$.
- 4. Find the solution to each of these recurrence relations and initial conditions. (12%)
 - (a) $a_n = a_{n-1} + 2n + 3$, $a_0 = 4$.
 - (b) $a_n = 5a_{n-1} 6a_{n-2}$, $a_0 = 1$, $a_1 = 0$.
- 5. Prove or disprove: if A, B, and C are sets, then $A (B \cap C) = (A B) \cup (A C)$. (10%)
- 6. Find all solutions, if any, to the system of congruences $x \equiv 5 \pmod{6}$, $x \equiv 3 \pmod{10}$, and $x \equiv 8 \pmod{15}$. (10%)

國立彰化師範大學106學年度碩士班招生考試試題

系所: 電子工程學系(乙組選考戊)、

資訊工程學系(選考乙)、

資訊工程學系積體電路設計碩士班(選考戊)

☆☆請在答案紙上作答☆☆

共2頁,第2頁

科目: 離散數學

7. Prove that if *n* is a positive integer, then 21 divides $4^{n+1} + 5^{2n-1}$. (10%)

8. If x_1 , x_2 , x_3 , x_4 , x_5 , x_6 are nonnegative integers. How many solutions are there to equation

$$x_1 + x_2 + x_3 + x_4 + x_5 + x_6 = 29$$
, such that

(a)
$$x_i > 1$$
 for $i = 1, 2, 3, 4, 5, 6$ (6%)

(b)
$$x_1 < 8$$
 and $x_2 > 8$. (6%)

9. Find (a) 2³⁴⁴ mod 11, (b) 2³⁴⁴ mod 31. (10%)

- 10. Answer these questions for the poset ({2, 4, 6, 9, 12, 18, 27, 36, 48, 60, 72}, |). (8%)
 - (a) Find the maximal elements.
 - (b) Find the minimal elements.
 - (c) Is there a greatest element?
 - (d) Is there a least element?
 - (e) Find all upper bounds of {2, 9}.
 - (f) Find the least upper bound of $\{2, 9\}$, if it exists.
 - (g) Find all lower bounds of {60, 72}.
 - (h) Find the greatest lower bound of $\{60, 72\}$, if it exists.