國立彰化師範大學106學年度碩士班招生考試試題

系所: 化學系

科目:___综合化學__

☆☆請在答案紙上作答☆☆

共4頁,第1頁

There are four parts (A-D) in this paper, please answer these questions in order. A :

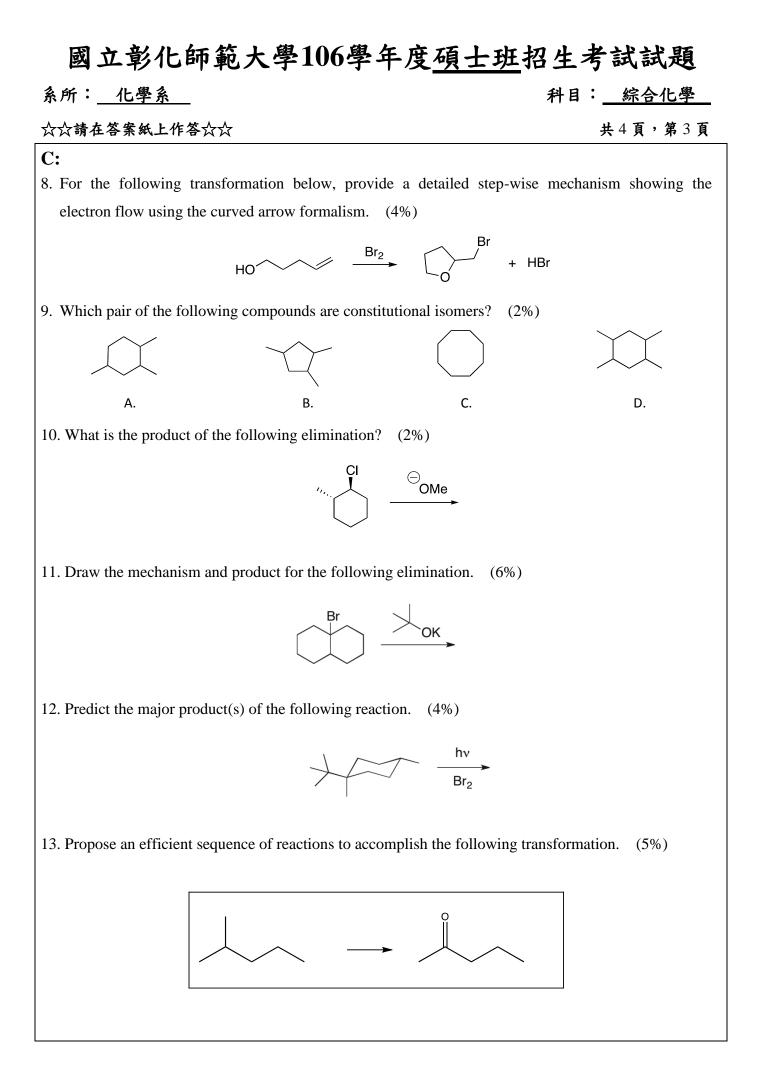
1. (2% for each answer, 8% total for the question)

For the rate constant of a first order elementary reaction, $A \rightarrow P$, the frequency factor is 10^8 s^{-1} and the activation energy 42 kJ mol⁻¹. Answer the following questions using a proper unit.

- (a) The rate constant at 25° C?
- (b) If $[A]_0 = 0.10M$, what is the initial reaction rate at 25°C?
- (c) What is the instantaneous reaction rate at 25° C after 5.0 sec of reaction time?
- (d) What is the half-life for the reaction?

2. (3% for each answer, 9% total for the question)

- (a) What is constant volume heat capacity, C_v , in J K⁻¹ for 1.0 mol of Helium gas?
- (b) The gas absorbs 100 J of heat and at the same time, performs 27 J of expansion work. What is the change in the internal energy of the gas, ΔU , in this process?
- (c) What is the temperature change, ΔT , of the gas?
- 3. (4% for each answer, 8% total for the question)


Calculate the energy levels of the π -network in butadiene, C₄H₆, using <u>the particle in the box</u> model. To calculate the box length, assume that the molecule is linear and use the values 135 and 154 pm for C=C and C–C bonds (1 pm = 10^{-12} m).

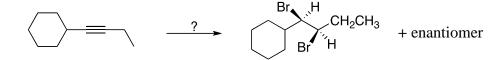
- (a) What is the box length in the model using the above given bond lengths?
- (b) What is the wavelength of light required to induce a transition from the ground state to the first excited state?

Useful constants

Ideal gas constant, $R = 8.314 \text{ J K}^{-1} \text{ mol}^{-1}$ Plank constant, $h = 6.626 \text{ x } 10^{-34} \text{ J s}$ Mass of an electron, $m = 9.11 \text{ x } 10^{-31} \text{ kg}$ Speed of light, $c = 2.998 \text{ x } 10^8 \text{ m s}^{-1}$

系所: <u>化學系</u>	科目: 综合化學
☆☆請在答案紙上作答☆☆	共4頁,第2頁
3:	
A. Draw simple band pictures for the following materials (5 $\%$); Suggest possible dopants for the n-type
and p-type semi-conductors. (2%).	
(1) insulator	
(2) conductor	
(3) pure semi-conductor	
(4) p-type semi-conductor	
(5) n-type semi-conductor	
5. Using Molecular Orbital Theory, calculate the bond order of th	e following molecules. Which will have the
shortest and longest bonds. (8%).	
♥、NO ⁺	
T NO て、NO	
と、NO 丙、NO	
7. Predict the products of the following reactions. (6 %).	
$\mathbb{F} \cdot \begin{bmatrix} \mathbf{Fe}(\mathbf{CO})_3 \end{bmatrix}^+ \mathbf{M}_{\mathbf{CO}}$	eLi ——►
$\mathcal{L} \sim \mathcal{C} \subset \mathcal{C} $	C ⁺ BF₄ [−] →
HBF4/0	CO

國立彰化師範大學106學年度碩士班招生考試試題


系所: 化學系

科目: 综合化學

☆☆請在答案紙上作答☆☆

共4頁,第4頁

14. Which sequence of reactions is expected to produce the product below as the final, and major, organic product? (2%)

- (A) 1)Br₂; 2) H₂, Lindlar's cat.;
- (B) 1) H_2 , Lindlar's cat.; 2) Br_2 ;
- (C) 1)Br₂; 2) Na, $NH_3(l)$;
- (D) 1)Na, $NH_3(l)$; 2) Br_2 ;
- (E) 1)Br₂; 2) H_2 , Pt

D:

- 15. A 0.8 g sample of primary standard Na₂CO₃ required 50.9 mL of an H₂SO₄ solution to reach the end point of the reaction. What is the molar concentration of H₂SO₄? (10%) $CO_3^{2-} + 2H^+ \rightarrow H_2O + CO_{2(g)}$ (Na = 23.0, C = 12.0, O = 16.0)
- 16. The Zn in a 1.0 g sample of foot powder was titrated with 60.0 mL of 0.05 M EDTA. Calculate the percent Zn in this sample. (Zn = 65.4) (10%)

17. How would you prepare 0.5 L of the following solution: 0.03 M CuSO₄·5H₂O from the solid? (5%) (Cu = 63.5, S = 32.1, O = 16.0, H = 1.0)