國立彰化師範大學106學年度碩士班招生考試試題

系所：化㨻系

科目：綜合化學

认請在答案紙上作答认

There are four parts（A－D）in this paper，please answer these questions in order．

A ：
1．（ 2% for each answer， 8% total for the question）
For the rate constant of a first order elementary reaction， $\mathrm{A} \rightarrow \mathrm{P}$ ，the frequency factor is $10^{8} \mathrm{~s}^{-1}$ and the activation energy $42 \mathrm{~kJ} \mathrm{~mol}^{-1}$ ．Answer the following questions using a proper unit．
（a）The rate constant at $25^{\circ} \mathrm{C}$ ？
（b）If $[\mathrm{A}]_{0}=0.10 \mathrm{M}$ ，what is the initial reaction rate at $25^{\circ} \mathrm{C}$ ？
（c）What is the instantaneous reaction rate at $25^{\circ} \mathrm{C}$ after 5.0 sec of reaction time？
（d）What is the half－life for the reaction？

2．（ 3% for each answer， 9% total for the question）
（a）What is constant volume heat capacity， C_{v} ，in $\mathrm{J} \mathrm{K}^{-1}$ for 1.0 mol of Helium gas？
（b）The gas absorbs 100 J of heat and at the same time，performs 27 J of expansion work．What is the change in the internal energy of the gas，$\Delta \mathrm{U}$ ，in this process？
（c）What is the temperature change，$\Delta \mathrm{T}$ ，of the gas？

3．（ 4% for each answer， 8% total for the question）
Calculate the energy levels of the π－network in butadiene， $\mathrm{C}_{4} \mathrm{H}_{6}$ ，using the particle in the box model．
To calculate the box length，assume that the molecule is linear and use the values 135 and 154 pm for $\mathrm{C}=\mathrm{C}$ and $\mathrm{C}-\mathrm{C}$ bonds $\left(1 \mathrm{pm}=10^{-12} \mathrm{~m}\right)$ ．
（a）What is the box length in the model using the above given bond lengths？
（b）What is the wavelength of light required to induce a transition from the ground state to the first excited state？

Useful constants

Ideal gas constant， $\mathrm{R}=8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$
Plank constant， $\mathrm{h}=6.626 \times 10^{-34} \mathrm{~J} \mathrm{~s}$
Mass of an electron， $\mathrm{m}=9.11 \times 10^{-31} \mathrm{~kg}$
Speed of light， $\mathrm{c}=2.998 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$

國立彰化師範大學106學年度碩士班招生考試試題

\qquad

B ：
4．Draw simple band pictures for the following materials（5 \％）；Suggest possible dopants for the n－type and p－type semi－conductors．（2\％）．
（1）insulator
（2）conductor
（3）pure semi－conductor
（4）p－type semi－conductor
（5）n－type semi－conductor

5．Using Molecular Orbital Theory，calculate the bond order of the following molecules．Which will have the shortest and longest bonds．（8\％）．

$$
\begin{aligned}
& \text { 甲 , } \mathrm{NO}^{+} \\
& \text {乙, } \mathrm{NO}^{+} \\
& \text {丙, } \mathrm{NO}^{-}
\end{aligned}
$$

6．Compare the CsCl and NaCl lattices，particularly their coordination numbers．（ 4% ）．

7．Predict the products of the following reactions．（6\％）．

國立彰化師範大學106學年度碩士班招生考試試題

系所：化學系

科目：
綜合化學
ふ人請在答案紙上作答 \downarrow
C：
8．For the following transformation below，provide a detailed step－wise mechanism showing the electron flow using the curved arrow formalism．（4\％）

9．Which pair of the following compounds are constitutional isomers？（2\％）

A．

B．

C．

D．

10．What is the product of the following elimination？（2\％）

11．Draw the mechanism and product for the following elimination．（6\％）

12．Predict the major product（s）of the following reaction．（4\％）

13．Propose an efficient sequence of reactions to accomplish the following transformation．

國立彰化師範大學106學年度碩士班招生考試試題

\qquad

14．Which sequence of reactions is expected to produce the product below as the final，and major， organic product？（2\％）

（A） 1$) \mathrm{Br}_{2}$ ；
2）H_{2} ，Lindlar＇s cat．；
（B） 1$) \mathrm{H}_{2}$ ，Lindlar＇s cat．；
2） Br_{2} ；
（C） 1$) \mathrm{Br}_{2}$ ；
2） $\mathrm{Na}, \mathrm{NH}_{3}(l)$ ；
（D） 1$) \mathrm{Na}, \mathrm{NH}_{3}(l)$ ；
2） Br_{2} ；
（E） 1$) \mathrm{Br}_{2}$ ；
2） $\mathrm{H}_{2}, \mathrm{Pt}$

D：
15．A 0.8 g sample of primary standard $\mathrm{Na}_{2} \mathrm{CO}_{3}$ required 50.9 mL of an $\mathrm{H}_{2} \mathrm{SO}_{4}$ solution to reach the end point of the reaction．What is the molar concentration of $\mathrm{H}_{2} \mathrm{SO}_{4}$ ？（10\％）
$\mathrm{CO}_{3}{ }^{2-}+2 \mathrm{H}^{+} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2(\mathrm{~g})}$
$(\mathrm{Na}=23.0, \mathrm{C}=12.0, \mathrm{O}=16.0)$

16．The Zn in a 1.0 g sample of foot powder was titrated with 60.0 mL of 0.05 M EDTA．Calculate the percent Zn in this sample．$(\mathrm{Zn}=65.4) \quad(10 \%)$

17．How would you prepare 0.5 L of the following solution： $0.03 \mathrm{M} \mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ from the solid？（5\％） $(\mathrm{Cu}=63.5, \mathrm{~S}=32.1, \mathrm{O}=16.0, \mathrm{H}=1.0)$

