國立中央大學 106 學年度碩士班考試入學試題

所別: 統計研究所 碩士班 不分組(一般生)

共/頁 第/頁

統計研究所 碩士班 不分組(在職生)

科目: 數理統計

本科考試可使用計算器,廠牌、功能不拘 須有計算過程

*請在答案卷

內作答

1. Suppose that the pair of random variables (X, Y) has the joint density

$$f(x,y) = \frac{\Gamma(\alpha+\beta+\gamma)}{\Gamma(\alpha)\Gamma(\beta)\Gamma(\gamma)} x^{\alpha-1} y^{\beta-1} (1-x-y)^{\gamma-1},$$

for x > 0, y > 0, and x + y < 1.

- (a) (10%) Find the joint density of S = X + Y and $R = \frac{X}{X + Y}$.
- (b) (10%) Assume that α and β are known. From n independent and identically distributed copies of the pair (X_i, Y_i) , show that $\Pi_{i=1}^n (1 S_i)$ is a complete sufficient statistic for estimating γ and $\Pi_{i=1}^n R_i$ is an ancillary statistic for estimating γ . What does Basu's theorem say in this context?
- 2. Suppose Y_1, Y_2, \dots, Y_n are independent random variables with probability density functions (pdf for short) written as

$$f_i(y_i) = \beta_i e^{\beta_i y_i} \quad y_i \ge 0$$

where $\beta_i = \theta x_i$ for unknown parameter $\theta > 0$ and fixed unknown constants $x_i > 0$ for $i = 1, 2, \dots, n$.

- (a) (10%) Show that the joint pdf $f(y_1, \dots, y_n | \theta)$ forms a one parameter exponential family with minimal sufficient statistic $T = \sum_{i=1}^{n} x_i Y_i$.
- (b) (10%) What is the probability distribution of T?
- (c) (10%) What is the exact (if possible) or an approximated confidence interval with confidence coefficient 1α for θ ?
- 3. Let (X_1, \dots, X_n) be a random sample from a population with the probability density function f. Let θ_0 and θ_1 be two constants with $\theta_0 < \theta_1$. Obtain a size α uniformly most powerful test for testing $H_0: \theta = \theta_0$ versus $H_a: \theta = \theta_1$ in the following cases
 - (a) (10%) $f(x) = e^{-(x-\theta)}$ for $x \ge \theta$.
 - (b) (10%) $f(x) = \theta x^{-2}$ for $x \ge \theta$.
- 4. Let (X_1, \dots, X_n) be a random sample with the probability density f. Find a maximum likelihood estimator of θ in the following cases
 - (a) (10%) $f(x) = \frac{1}{\sqrt{2\pi\theta^2}} e^{\frac{(x-\theta)^2}{2\theta^2}}$ for $-\infty < x < \infty$ and $\theta \neq 0$.
 - (b) (10%) $f(x) = \theta^x (1-\theta)^{1-x}$ for x = 0 or x = 1 and $\theta \in \left[\frac{1}{6}, \frac{5}{6}\right]$.
 - (c) (10%) f(x) = 1 for 0 < x < 1 if $\theta = 1$ and $f(x) = \frac{1}{2\sqrt{x}}$ for 0 < x < 1 if $\theta = 2$.

參考用