國立臺北科技大學 106 學年度碩士班招生考試

系所組別:1503 自動化科技研究所

第二節 電子學 試題 (選考)

第一頁 共二頁

注意事項:

- 1. 本試題共5題,共100分。
- 2. 請標明大題、子題編號作答,不必抄題。
- 3. 全部答案均須在答案卷之答案欄內作答,否則不予計分。
- 1. Figure 1 shows a circuit having an input resistance of $100 \text{ k}\Omega$ and a gain that can be varied from -1 V/V to -10 V/V using the $10\text{-k}\Omega$ potentiometer R_4 . What is the voltage gain when the potentiometer is set exactly at its middle value? (15 pts)

- 2. The amplifier shown in Fig. 2 is biased to operate at $I_D=1$ mA, $g_m=1$ mA/V. Neglecting r_O . (20 pts, each sub-problem is 10 pts)
 - (a) Find the midband gain.
 - (b) Find the value of C_s that places f_L (the low 3-dB frequency) at 10Hz.

Figure 2

3. For each of the circuits shown in Figure 3, find the emitter, base, and collector voltages and currents. Use $\beta = 30$, but assume $|V_{BE}| = 0.7 \text{ V}$ independent of current level. (20 pts, each sub-problem is 5pts)

Figure 3

注意:背面尚有試題

第二頁 共二頁

- 4. See Figure 4 and assume that $R_1C_1 >> R_2C_2$. (30 pts, each sub-problem is 10pts)
 - (a) Derive the transfer function of the circuit.
 - (b) Sketch the Bode plot for the magnitude response of the circuit.
 - (c) Design a circuit to provide a gain of 60dB in the ''middle frequency range," a low-frequency 3-dB point at 100Hz, a high-frequency 3-dB point at 10kHz, and an input resistance (at high frequency) of $1k\Omega$.

- 5. Figure 5 shows a common-source (CS) amplifier with R_{sig} =100k Ω , R_G = 4.7M Ω , R_D = R_L =15k Ω , g_m =1mA/V, r_o =150k Ω , C_{gs} =1pF, C_{gd} =0.4pF, C_S =1.6 μ F, C_{C1} =3.3nF, and C_{C2} =0.53 μ F. Find
 - (a) The midband gain A_M . (7pts)
 - (b) The upper 3-dB frequency f_H . (8pts)

Figure 5