國立臺南大學 106 學年度 應用數學系碩士班 招生考試 微積分 試題卷

1．Find the integral $\int_{0}^{\ln 2} \frac{e^{x}}{1+e^{2 x}} d x$ ．（8\％）
2．Determine whether the integral $\int_{1}^{4} \frac{1}{(x-2)^{2}} d x$ converges．（8\％）
3．Find the limit $\lim _{x \rightarrow \infty}(\sin \sqrt{x+1}-\sin \sqrt{x}) \cdot(10 \%)$
4．Find the equation for the tangent line to the curve $\left(x^{2}+y^{2}\right)^{2}=(x-y)^{2}$ at the point $(1,0)$ ．（ 10% ）

5．Let

$$
f(x)=\left\{\begin{array}{cc}
x^{2} \sin \frac{1}{x}, & x \neq 0, \\
0, & x=0 .
\end{array}\right.
$$

（1）Prove that $f(x)$ is continuous at $x=0$ ．
（2）Find the derivative of $f(x)$ ．

6．Test the following series for convergence or divergence：（15\％）
（1）$\sum_{n=1}^{\infty} \frac{1}{100+4^{n}}$ ．
（2）$\sum_{n=1}^{\infty} \frac{1}{n^{3 / 5}}$ ．
（3）$\quad \sum_{n=1}^{\infty}(-1)^{n} \frac{n^{3}}{3^{n}}$ ．
7．Define $f(x, y)=x e^{-y}+y e^{-x}$ ．（20\％）
（1）Please explain if $\frac{\partial f}{\partial x}(0,0)$ and $\frac{\partial f}{\partial y}(0,0)$ exist．
（2）Find the gradient $\nabla f(0,0)$ ．
（3）Find the maximum rate of change of f at the point $(0,0)$ ．Also，find the direction in which it occurs（you can describe it in terms of a vector）．

8．Suppose that D is the half－annulus given by

$$
1 \leq x^{2}+y^{2} \leq 4, \quad y \geq 0
$$

Evaluate

$$
\iint_{D} \sin \left(x^{2}+y^{2}\right) d A
$$

