- 1. Find the integral $\int_0^{\ln 2} \frac{e^x}{1 + e^{2x}} dx.$ (8%)
- 2. Determine whether the integral $\int_{1}^{4} \frac{1}{(x-2)^2} dx$ converges. (8%)
- 3. Find the limit $\lim_{x \to \infty} (\sin \sqrt{x+1} \sin \sqrt{x})$. (10%)
- 4. Find the equation for the tangent line to the curve $(x^2 + y^2)^2 = (x y)^2$ at the point (1,0). (10%)
- 5. Let

$$f(x) = \begin{cases} x^2 \sin \frac{1}{x}, & x \neq 0, \\ 0, & x = 0. \end{cases}$$
(14%)

- (1) Prove that f(x) is continuous at x = 0.
- (2) Find the derivative of f(x).
- 6. Test the following series for convergence or divergence: (15%)
 - (1) $\sum_{n=1}^{\infty} \frac{1}{100+4^n}$.
 - (2) $\sum_{n=1}^{\infty} \frac{1}{n^{3/5}}$.
 - (3) $\sum_{n=1}^{\infty} (-1)^n \frac{n^3}{3^n}$.
- 7. Define $f(x, y) = xe^{-y} + ye^{-x}$. (20%)
 - (1) Please explain if $\frac{\partial f}{\partial x}(0,0)$ and $\frac{\partial f}{\partial y}(0,0)$ exist.
 - (2) Find the gradient $\nabla f(0,0)$.
 - (3) Find the maximum rate of change of f at the point (0,0). Also, find the direction in which it occurs (you can describe it in terms of a vector).
- 8. Suppose that *D* is the half-annulus given by

 $1 \le x^2 + y^2 \le 4, \ y \ge 0.$ (15%) $\iint_{D} \sin(x^2 + y^2) dA.$

Evaluate