題號: 386 國立臺灣大學 105 學年度碩士班招生考試試題

科目:微積分(C)

題號: 386

頁

共 3 頁之第

節次: 8

For Questions 1 to 5, show your calculations in detail on the answer sheet.

- 1. (10%) Find $\frac{dF(x)}{dx}$ if $F(x) = \sqrt{x^2 + 1}$.
- 2. (10%) If $f(x,y) = x^3 + x^2y^3 2y^2$, find $f_x(2,1)$ and $f_y(2,1)$.
- 3. (10%) Find $\frac{d}{dx}[\ln|\cos(x)|]$.
- 4. (10%) If $w = x^3y^4$ and $x = t^2 2$, y = 5t 3, find $\frac{dw}{dt}$ at t = 1.
- 5. (10%) Find $\int \ln x \, dx$.

For Questions 6 to 15, select a correct answer for each question and mark the letter (A), (B), (C), or (D) on your answer card.

- 6. (5%) What is the value of $x + 2^2x^2 + \dots + n^2x^n$ if x = 3 and n = 12?
 - (A) 106022478
 - (B) 108070187
 - (C) 108080187
 - (D) None of the above
- 7. (5%) For the summation equation in Question 6, what is its value if x = 0.5 and $n \to \infty$?
 - (A) 5
 - (B)6
 - (C)7
 - (D) None of the above
- 8. (5%) Determine whether the following statement is true or false.

"Suppose
$$a_n$$
 is a series. If $\lim_{n\to\infty} \left|\frac{a_{n+1}}{a_n}\right| = c$, then $\lim_{n\to\infty} \sqrt[n]{|a_n|} = c$."

- (A) False
- (B) True
- (C) Uncertain (need more information)
- (D) None of the above

國立臺灣大學 105 學年度碩士班招生考試試題

題號: 386 科目:微積分(C)

題號: 386 共 7 頁之第 2 頁

科目:微積分(C) 節次: 8

9. (5%) The Gaussian Quadrature method is a numerical way to generate the approximation of the definite integral of any function f(x) as follows.

$$\int_{-1}^1 f(x) dx \approx \sum_{i=1}^n w_i f(x_i).$$

Both the abscissas, x_i , and the weighting coefficients, w_i , are free parameters and they can be solved based on the following 2n equations

$$\int_{-1}^{1} x^{l} dx = \sum_{i=1}^{n} w_{i} x_{i}^{l} \text{ for } l = 0, 1, ..., 2n - 1.$$

If n = 2, what is the value of $w_1 + w_2 + x_1 + x_2$?

- (A) 0
- (B) 1
- (C) 2
- (D) None of the above
- 10. (5%) Given the solutions of w_1 , w_2 , x_1 , and x_2 in Question 9, use the Gaussian Quadrature method (with n=2) to approximate $\int_{-1}^{1} x \ln(x^2) dx$. What is the absolute value of the approximation error?
 - (A) ln(1/3)
 - (B) $\sqrt{1/3}$
 - (C) 0
 - (D) None of the above
- 11. (5%) Suppose that a random variable S follows a lognormal distribution and its probability density function is

$$\frac{1}{S\sigma\sqrt{2\pi}}e^{-\frac{(\ln S-\mu)^2}{2\sigma^2}},$$

where μ and σ represent the mean and standard deviation of the lognormal distribution, respectively. Define N(d) as the cumulative probability of the standard normal distribution from $-\infty$ to a constant d. What is the expected value of S conditional on $S \ge K$, where K is a nonnegative constant?

(A)
$$e^{\mu + 0.5\sigma^2} N(\frac{\mu + \sigma^2 - \ln K}{\sigma})$$

(B)
$$e^{\mu+\sigma^2}N(\frac{\mu+0.5\sigma^2-\ln K}{\sigma})$$

(C)
$$e^{\mu+0.5\sigma^2}N(\frac{\mu+0.5\sigma^2-\ln K}{\sigma})$$

題號: 386

國立臺灣大學 105 學年度碩士班招生考試試題

科目:微積分(C)

節次: 8

題號: 386 共) 頁之第) 頁

(D) None of the above

12. (5%) A company grows in value by 10% each year, and also gains 20% of a growing market estimated at $100e^{0.1t}$ million dollars, where t is the number of years that the company has been in business. Therefore, the value y(t) of the company (in millions of dollars) satisfies

$$y' = 0.1y + 20e^{0.1t}$$
 and $y(0) = 1$ (million dollars).

What is the value of this company after 5 years?

- (A) 173 million dollars
- (B) 167 million dollars
- (C) 180 million dollars
- (D) None of the above
- 13. (5%) Let $f(x, y) = 2x^2 + y^2 + 2xy + 4x + 2y + 7$. Find the minimum value of the function f(x, y) subject to the constraint $4x^2 + 4xy = 1$.
 - (A)4
 - (B)5
 - (C) 6
 - (D) None of the above
- 14. (5%) Evaluate the following double integral for a specified region A.

$$\iint_A e^{y^3} dA,$$

where A is the region bounded by $y = \sqrt{x}$, y = 1, and x = 0.

- (A) $\frac{1}{2}(e-1)$
- (B) $\frac{1}{3}(e-2)$
- (C) 1
- (D) None of the above
- 15. (5%) What is the value of $\int_1^\infty \frac{\ln x}{x^2} dx$?
 - (A) 0
 - (B) ∞
 - (C) 1
 - (D) None of the above