題號: 262

國立臺灣大學101學年度碩士班招生考試試題

科目:工程數學(G)

節次: 6

題號: 262 頁

2 頁之第

1. (a) Let
$$A = \begin{bmatrix} \alpha & -4 \\ 3 & \beta \end{bmatrix}$$
, suppose $u_1 = \begin{bmatrix} 4 \\ 3 \end{bmatrix}$, and $u_2 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ are eigenvectors of A .

- (i) (5%) Find α and β . Compute $tr(A^5)$.
- (ii) (7%) Assume B is another 2×2 matrix, whose eigenvectors are the same with A, i.e., u_1 and u_2 with corresponding eigenvalues $\lambda_1 = 1$ and $\lambda_2 = -1$. Calculate
- (b) Assume that C is a real nonsingular symmetric $n \times n$ matrix with distinct eigenvalues.
 - (i) (6%) Show that eigenvalues of C are all real and eigenvectors are all mutually orthogonal.
 - (ii) (6%) Solve Tx = y where $T = C^2$ and x, y both are $n \times 1$ column vectors.
- (c) Assume that matrix A is idempotent (i.e., $A^2 = A$).
 - (i) (3%) Find all eigenvalues of A.
 - (ii) (3%) Show that I A is also idempotent.
 - (ii) (3%) Show that $(I-2A)^{-1} = I-2A$.
- 2. Consider the equation describing the small angular displacement θ , of a pendulum in a viscous liquid. A force balance gives

$$\frac{d^2\theta}{dt^2} + \omega^2\theta + \sigma\frac{d\theta}{dt} = f(t)$$

where $\omega > 0$. The term $\sigma \frac{d\theta}{dt}$ is damping due to friction within the liquid.

- (a) (4%) Make the equation dimensionless defining $\tau = \omega t$ to show that the solution $\theta(\tau)$ depends on a single dimensionless parameter $\beta = \frac{\delta}{\alpha}$.
- (b) (10%) Find the solution $\theta(\tau)$ and $\theta'(\tau)$ for $\beta = 1$ and $\beta = 3$ for the homogeneous equation when there is no forcing, i.e. f(t) = 0, with the boundary conditions $\theta(0) = \theta_0$, $\theta'(0) = 0$
- (c) (7%) Find the general solution $\theta(\tau)$ for $\beta = 1$ when there is a decaying forcing $f(t) = e^{-0.5\omega t}$, where ω is real constant.

題號: 262

國立臺灣大學101學年度碩士班招生考試試題

科目:工程數學(G)

節次: 6

題號: 262

共 2 頁之第 2 頁

3. Consider the differential eigenvalue problem

$$x^2\phi^{"} + 2x\phi^{'} + \lambda x^2\phi = 0$$
, with the boundary condition

$$\phi'(0) = 0, \ \phi(1) = 0,$$

where λ is the eigenvalue.

- (a) (4%) Is this problem of Sturm-Liouville type? If so, put the problem in "standard form".
- (b) (9%) Find the eigenvalues and eigenfunctions for this problem (Hint: Conside $\phi = \frac{f}{x}$ and solve for f).
- 4. Consider a partial differential equation of u(x, y)

$$3\frac{\partial^2 u}{\partial x^2} + 4\frac{\partial^2 u}{\partial x \partial y} + \frac{\partial^2 u}{\partial y^2} + 3u = 4\sin(x - 2y)$$

in a semi-infinite strip Ω , as shown in the figure, bounded by lines L_1 , L_2 and x-axis:

$$L_1: x - 2y = 0$$
, $L_2: x - 2y = \pi$, x-axis: $y = 0$

The boundary conditions and initial conditions are u = 0 along L_1 & L_2 ,

and
$$u = \frac{\partial u}{\partial y} = 0$$
 along x-axis.

(a) (16%) Show that by using change of variables

$$\xi = x - 2y$$
, $\eta = y$

will reduce the partial differential equation into the form of

$$\frac{\partial^2 u}{\partial \xi^2} - \frac{\partial^2 u}{\partial \eta^2} + \alpha u = F(\xi, \eta)$$

Find also the constant coefficient α and the function $F(\xi, \eta)$.

(b) (17%) Find the solution of u(x, y).

