題號: 228 國立臺灣大學

國立臺灣大學101學年度碩士班招生考試試題

題號: 228 共 2 頁之第 / 頁

科目:熱力學(A) 節次: 8

1. (26%) A steam power plant operates on the reheat Rankine cycle. Steam enters the high-pressure turbine at 10MPa and 550°C and leaves at 2.5MPa. Steam is then reheated at constant pressure to 450°C before it expands in the low-pressure turbine to 10kPa. The isentropic efficiencies of the turbines and the pump are 85 percent and 90 percent, respectively. Steam

the low-pressure turbine, (b) the net power output, and (c) the thermal efficiency. Saturated water table (f: saturated liquid, g: saturated vapor)

P, kPa	v _f , m ³ /kg	v_g , m ³ /kg	h _f , kJ/kg	hfg, kJ/kg	s _f , kJ/kg.K	sfg, kJ/kg.K
10	0.001010	14.670	191.81	2392.1	0.6492	7.4996

leaves the condenser as a saturated liquid. Determine (a) the quality of the steam when it leaves

Superheated water table

P, MPa	T, °C	h, kJ/kg	s, kJ/kg.K		
10	550	3502.0	6.7585		
2.5	300	3009.6	6.6459		
2.5	350	3127.0	6.8424		
2.5	450	3351.6	7.1768		

- 2. (24%) Answer the following questions clearly but briefly.
- (i) What are point and path functions? Give one example for each.
- (ii) A system undergoes a process between two fixed states first in a reversible manner and then in an irreversible manner. For which case is the entropy change of the system greater? Explain.
- (iii) The entropy of a hot baked potato decreases by an amount of 2kJ/K as it cools. Is the entropy increment of the surrounding air greater than, less than, or equal to 2kJ/K? Explain.
- (iv) How does the excess CO2 gas in the atmosphere cause the green house effect?
- (v) Somebody claims to have developed a new refrigerator that can remove 12.5kWh of energy from the 4°C-refrigerated space in a 27°C-environment for each 1kWh of electricity it consumes. Is this a violation of the first law of thermodynamics? Explain.
- (vi) Re-consider the refrigerator discussed in (iv). Is it a violation of the second law of thermodynamics? Explain.
- 3. (20%) A fluid flows at a rate m between parallel plates spaced a distance w apart. There is a uniform heat flux q_0 from the top plate <u>into</u> the fluid, and the bottom plate is adiabatic. There are two flow conditions that differ <u>only</u> by flow regime.
 - A. Laminar flow B.
 - B.Turbulent flow
- (a) Please write the definition of the mean temperature (Tm).
- (b) Please <u>sketch</u> the mean temperature (T_m) and upper wall temperature (T_0) as a function of distance and label clearly T_m and T_0 for laminar flow (A) and turbulent flow (B). Assume T_e is the entrance fluid flow temperature.
- (c) Sketch carefully the temperature profiles at x = L and label clearly which is A and B.

題號: 228 國立臺灣大學101學年度碩士班招生考試試題

科目:熱力學(A)

節次: 8

共 2 頁之第 2 頁

4. (30%) In a circular hot tube shown in the following Figure.,

- (a) Please write down heat transfer equation (with the expression of total thermal resistance) from the insulated pipe to the surrounding air. Assume k (pipe) > k (insulation)
- (b) If only increase k (insulation), what are the effects on \mathbf{h} (outside), \mathbf{Gr} (Grashof number) and \mathbf{q} (heat loss to surroundings)?
- (c) If only increase ambient air temperature, what are the effects on h (outside), Gr (Grashof number) and q (heat loss to surroundings)?
- (d) When only increase k (pipe), what are the effects on \mathbf{h} (outside), Gr (Grashof number) and \mathbf{q} (heat loss to surroundings)?
- (e) If the inner tube surfaces are roughened or corrugated, what is the effect on h (inside)?

試題隨卷繳回