2 頁之第

- 1. (14%) Find the general solutions of the following ODE's.
 - (a) $y'' + 2y' + y = e^{-x}$
 - (b) $x^2y'' xy' + y = 0$
- 2. (14%)
 - (a) Find the inverse Laplace transform y(t)

$$Y(s) = \frac{s^3}{s^4 + 4}$$

(b) Find the Laplace transform Y(s)

$$y(t) = e^t$$
, $0 \le t < 5$
= e^{10-t} , $5 \le t$

3. (15%) The definition of Bessel function of order n is

$$J_n(x) = x^n \sum_{m=0}^{\infty} \frac{(-1)^m x^{2m}}{2^{2m+n} m! (n+m)!}$$

110

Show that

$$\frac{\mathrm{d}}{\mathrm{d}x}[x^nJ_n(x)] = x^nJ_{n-1}(x) \text{ , and }$$

$$\frac{\mathrm{d}}{\mathrm{d}x}[x^{-n}J_n(x)] = -x^{-n}J_{n+1}(x).$$

- 4. (7%) With Bessel function $J_{1/2}(x) = \sqrt{2/\pi x} \sin x$, determine the Bessel function $J_{-1/2}(x)$.
- 5. (10%) Find the Fourier series of the following function f(x).

$$f(x) = \begin{cases} x - \pi & \text{if } 0 < x < \pi \\ -\pi & \text{if } \pi < x < 2\pi \end{cases} \text{ and } f(x + 2\pi) = f(x)$$

- 6. (10%) A field vector $\underline{\mathbf{F}} = 3xy\mathbf{i} + 7y^2\mathbf{j} + z^2\mathbf{k}$ is given. A three dimensional region is bounded by a closed surface S consisting of a cylinder surface $x^2+y^2=1$ (at $0 \le z \le 1$) and two circular disks z=0 and z=1 (at $x^2+y^2 \le 1$). \underline{n} is the unit normal vector of the surface S.
 - (a) Please find $\underline{F} \bullet \underline{n}$ at the point $(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}, \frac{1}{2})$?
 - (b) Use divergence theorem of Gauss to find the value of $\iint \underline{F} \bullet \underline{n} \, dA$
- 7. (15%) Please use separation of variables solving the following partial differential equation.

$$\frac{\partial^2 u(x,t)}{\partial t^2} = 9 \frac{\partial^2 u(x,t)}{\partial x^2} \quad \text{for } 0 \le x \le 1 \quad \text{and} \quad t \ge 0$$

題號: 231

國立臺灣大學101學年度碩士班招生考試試題

科目:工程數學(E)

節次: 6

題號: 231 2 頁之第 2 頁

$$u(0,t) = u(1,t) = 0$$
 for $t \ge 0$

$$\frac{\partial u}{\partial x}(x,0) = \cos 3\pi x$$
 for $0 \le x \le 1$

$$\frac{\partial u}{\partial t}(x,0) = \sin \pi x$$
 for $0 \le x \le 1$

8. (15%)

(a) Please find the eigenvalues and eigenvectors of a matrix \underline{A}

$$\underline{\mathbf{A}} = \begin{bmatrix} 2 & 2 \\ 1 & 3 \end{bmatrix}$$

(b) Set $\underline{X} = [\underline{x_1}, \underline{x_2}]$, which is the matrix with a basis of eigenvectors of \underline{A} ($\underline{x_1}$ and $\underline{x_2}$) as column vectors. What is its inverse (\underline{X}^{-1})?

(c) Please solve the following differential equations. Both y_1 and y_2 are only functions of t.

$$y_1' = 2y_1 + 2y_2$$

$$y_2' = y_1 + 3y_2 + \frac{3}{2}$$

The initial conditions are

$$y_1(t=0)=0$$

$$y_2(t=0) = -\frac{3}{4}$$

(Hint: you may set $\begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \underline{X} \begin{bmatrix} z_1 \\ z_2 \end{bmatrix}$ and try to solve z first. In addition, $\underline{X}^{-1}\underline{A}\underline{X} = \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix}$, where λ_1, λ_2

are eigenvalues of A.)

試題隨卷繳回