## 國立中正大學106學年度碩士班招生考試試題

電機工程學系-信號與媒體通訊組

系所别:

通訊工程學系- 通訊甲組 通訊丙組

科目:線性代數

第2節

第/頁,共上頁

1. (15%) For the following sampled data of a function y=f(x)

| X | 0 | 1 | 2 | 3 | 4 |
|---|---|---|---|---|---|
| ν | 3 | 3 | 2 | 4 | 4 |

Please estimate f(3.5) by using linear and quadratic least-squares-error criterion, respectively, and tell me the optimality between them.

- 2. (10%) Let  $R^3$  have the Euclidean inner product. The subspace of  $R^3$  spanned by the vectors  $\mathbf{u}_1 = (\frac{4}{5}, 0, \frac{-3}{5})$  and  $\mathbf{u}_2 = (0,1,0)$  is a plane passing through the origin. Express  $\mathbf{w} = (1,2,3)$  in the form  $\mathbf{w} = \mathbf{w}_1 + \mathbf{w}_2$ , where  $\mathbf{w}_1$  lies in the plane and  $\mathbf{w}_2$  is perpendicular to the plane.
- 3. (15%) (a) Show that if  $\mathbf{v}$  is any  $n \times 1$  matrix and I is the  $n \times n$  identity matrix, then  $I \mathbf{v}\mathbf{v}^T$  is orthogonally diagonalizable.
  - (b) Find a matrix P that orthogonally diagonalizes  $I \mathbf{v}\mathbf{v}^T$  if

$$\mathbf{v} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$$

- 4. (10%) Let  $\lambda_1$  and  $\lambda_2$  be distinct eigenvalues of A. Let  $\mathbf{x}$  be an eigenvector of A belonging to  $\lambda_1$  and let  $\mathbf{y}$  be an eigenvector of  $A^T$  belonging to  $\lambda_2$ . Show that  $\mathbf{x}$  and  $\mathbf{y}$  are orthogonal.
- 5. (10%) Let  $A = [a_{ij}]$  be a 2x2 matrix with  $a_{22} \neq 0$ . The matrix A can be factored into a product of the form

$$\begin{bmatrix} 1 & x \\ 0 & 1 \end{bmatrix} \begin{bmatrix} a_{11} & 0 \\ a_{21} & y \end{bmatrix}$$

What are the values of x and y?

國立中正大學 106 學年度碩士班招生考試試題

電機工程學系-信號與媒體通訊組

系所别:

通訊工程學系-通訊甲組

科目:線性代數

第2節

第2頁,共2頁

- 6. Let *B* be a 3x3 matrix with three column vectors  $\mathbf{b}_1$ ,  $\mathbf{b}_2$ , and  $\mathbf{b}_3$ . Suppose that  $2 \mathbf{b}_1 + 4 \mathbf{b}_2 + 6 \mathbf{b}_3 = \mathbf{0}$ 
  - (a) (5%) Will the corresponding homogeneous system have trivial solution?
  - (b) (5%) Is B singular or nonsingular? (Explain your answer)
- 7. In coding a message, a blank space was represented by 0, an 'A' by 1, a 'B' by 2, a 'C' by 3, and so on. The message was transformed using the matrix

$$C = \begin{bmatrix} -1 & 1 & 0 & 1 \\ -1 & 1 & 0 & 0 \\ 2 & -1 & -1 & 0 \\ 0 & 0 & 1 & -1 \end{bmatrix}$$

and sent as

- (a) (5%) Find the determinant of C?
- (b) (10%) What was the message?
- 8. In **P**<sub>3</sub>, there are two ordered bases  $p_1 = [x-1, x^2-1]$  and  $p_2 = [x^2+2x-3, 4x^2-x-3]$ 
  - (a) (10%) Find the transition matrix D corresponding to the change coordinates from  $p_1$  to  $p_2$ .
  - (b) (5%) Find the nullity of the matrix D.