題號: 413

國立臺灣大學101學年度碩士班招生考試試題

科目:數學 節次: 4

共 2 頁之第 /

※ 注意:請於試券內之「非選擇題作答區」標明題號依序作答。

## 1-10 題爲填充題

1. If 
$$\begin{bmatrix} 10 & 1 \\ 19 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ a & 1 \end{bmatrix} \begin{bmatrix} 1 & b \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ c & 1 \end{bmatrix}$$
 and  $a, b, c \in \mathbf{R}$ , then  $\begin{bmatrix} a \\ b \\ c \end{bmatrix} =$ \_\_\_\_\_\_\_(5%)

2. If 
$$A = \begin{bmatrix} 2 & 1 & d \\ 1 & 0 & -1 \\ 3 & 1 & 2 \end{bmatrix}$$
 and  $det(A) = 0$ , then  $d =$ \_\_\_\_\_\_.(5%)

3. If B = 
$$\begin{bmatrix} 2 & 1 & 3 & 1 & 0 & 4 \\ 1 & 2 & 3 & -1 & 1 & 5 \\ 0 & 1 & 1 & -1 & 2 & 2 \\ 1 & 1 & 2 & 0 & 2 & 3 \end{bmatrix}$$
 then rank(B) = \_\_\_\_\_.(5%)

4. 
$$\begin{bmatrix} \frac{1}{2} & \frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & \frac{1}{2} \end{bmatrix}^{300}$$
 = \_\_\_\_\_.(5%)

4. 
$$\begin{bmatrix} \frac{1}{2} & \frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & \frac{1}{2} \end{bmatrix}^{300} =$$
\_\_\_\_\_.(5%)

5. Suppose 
$$A \in \mathbb{R}^{3\times 3}$$
 and  $det(xl_3 - A) = x^3 - x^2 + 3x - 2$ , then  $det(xl_3 - A^2) =$ \_\_\_\_\_\_\_.(5%)

6. Let 
$$A \in \mathbb{R}^{3 \times 3}$$
 and  $P = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 3 & 3 \\ 1 & 3 & 4 \end{bmatrix}$ . If  $AP = P \begin{bmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$  and  $A^T \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$ 

7. Let 
$$A = \begin{bmatrix} 2 & 3 \\ 1 & 2 \end{bmatrix}$$
 and  $B = \begin{bmatrix} 2 & 13 \\ -1 & 6 \end{bmatrix}$ . If  $AC + CA = B$  then the matrix  $C =$ \_\_\_\_\_\_.(5%)

8. Let 
$$H = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 9 & 10 & 11 & 12 \\ 13 & 14 & 15 & 16 \end{bmatrix}$$
. Suppose  $H^3 = \alpha H^2 + \beta H + \gamma I_4$ ,  $\alpha, \beta, \gamma \in \mathbb{R}$ , then

$$\begin{bmatrix} \alpha \\ \beta \\ \gamma \end{bmatrix} = \underline{\qquad} .(5\%)$$

9. If 
$$T = \begin{bmatrix} 1 & 2 & 2^2 & 2^3 & 2^4 & 2^5 \\ 2 & 1 & 2 & 2^2 & 2^3 & 2^4 \\ 2^2 & 2 & 1 & 2 & 2^2 & 2^3 \\ 2^3 & 2^2 & 2 & 1 & 2 & 2^2 \\ 2^4 & 2^3 & 2^2 & 2 & 1 & 2 \\ 2^5 & 2^4 & 2^3 & 2^2 & 2 & 1 \end{bmatrix}$$
 then  $det(T) =$ \_\_\_\_\_\_.(5%)

10 Let  $S = \{\sum_{k=1}^{99} x_k x_{k+1} | \ x_1, x_2, \cdots, x_{100} \in R \ \text{and} \ \ x_1^2 + x_2^2 + \cdots + x_{100}^2 = 1 \}$  then the largest number

題號: 413

## 國立臺灣大學101學年度碩士班招生考試試題

科目:數學 節次: 4

共 2 頁之第 2 頁

11 Determine which pairs of the following graphs are isomorphic. Also give an isomorphism for each isomorphic pair. (10%)



- 12 For  $n \ge 1$ , the nth triangular number  $t_n$  is defined by  $t_n = 1 + 2 + \dots + n$ .
  - (a) Find a recurrence relation for  $s_n$ , where  $n \ge 1$  and  $s_n = t_1 + t_2 + \dots + t_n$ . (5%)
  - (b) Compute  $a_0 + a_1 + a_2 + a_3 + \cdots$ , where  $s_n = a_0 + a_1 n + a_2 n^2 + a_3 n^3 + \cdots$  (5%)
- 13 Suppose  $1 \le a < b < c < d \le 12$ . How many sets  $\{a, b, c, d\}$  are there, where no consecutive integers (e.g., 1 and 2, 2 and 3, 3 and 4, ...) appear in  $\{a, b, c, d\}$ ? (10%)
- 14 A graph G = (V, E) is bipartite, if the vertex set V can be partitioned into two subsets  $V_1$ ,  $V_2$  such that each edge in E connects a vertex in  $V_1$  with a vertex in  $V_2$ . Further, a bipartite graph G is complete, if it has a maximal number, i.e.,  $|V_1| \times |V_2|$ , of edges. Usually, a complete bipartite graph G is denoted by  $K_{m,n}$ , where  $m = |V_1|$  and  $n = |V_2|$ .
  - (a) Suppose  $m \times n = 16$  and  $m \le n$ . Find the values of m, n such that  $K_{m,n}$  has one or more Euler circuits, but has no Hamilton cycle? (5%)
  - (b) Generalize the result of (a), i.e., give conditions of m, n under which  $K_{m,n}$  has one or more Euler circuits, but has no Hamilton cycle? (5%)
- 15 Suppose that  $(R, +, \cdot)$  is a ring and S is a nonempty subset of R. Then,  $(S, +, \cdot)$  is a ring if and only if
  - for all  $a, b \in S$ ,  $a+b \in S$  and  $a \cdot b \in S$ ;
  - for all  $a \in S$ ,  $-a \in S$ .

Please show that when S is finite,  $(S, +, \cdot)$  is a ring if and only if for all  $a, b \in S$ ,  $a+b \in S$  and  $a \cdot b \in S$ . (10%)

試題隨卷繳回