題號: 222

國立臺灣大學101學年度碩士班招生考試試題

科目:工程數學(B)

節次: 6

共 3 頁之第 / 頁

1. (15%) Consider the following wave equation, i.e.,

$$\frac{\partial^2 \theta}{\partial \tau^2} = \frac{\partial^2 \theta}{\partial \xi^2} + \xi^2, \quad (0 < \xi < h, \ 0 < \tau)$$
 (1)

subjected to the boundary conditions of $\theta(0,\tau) = \theta(h,\tau) = 0$ and the initial conditions of $\partial_{\tau}\theta(\xi,0) = \theta(\xi,0) = 0$ (note: $\partial_{\tau} = \partial/\partial \tau$). Solve Eq. (1) through the following steps:

- (a) (3%) Which one of the following transformations or change of variables is most likely to help you solve Eq. (1)? Let:
 - (A) $\theta(\xi,\tau) = \Xi(\xi)T(\tau)$,
 - (B) $\theta(\xi,\tau) = \Xi(\xi)T(\tau) + \Psi(\xi)$.
- (b) (6%) After transforming the variables in Eq. (1) using one of the transformations listed in (a), what are the governing differential equations as well as the new boundary and/or initial conditions for Ξ(ξ) and T(τ)?
- (c) (6 %) Find the solution to the original Eq. (1).
- 2. (15%)
 - (a) (3%) Let F(s) denote the Laplace transform of f(t), i.e., $\mathcal{L}[f(t)] = F(s)$. What is the Laplace transform of $\frac{\partial f}{\partial t}$ in terms of F(s), s, and the initial condition of f(t)?
 - (b) (3%) Take the Laplace transform with respect to the t-coordinate of the following partial differential equation along with its associated initial and boundary conditions, i.e.,

$$\frac{\partial \varphi}{\partial t} = \alpha \frac{\partial^2 \varphi}{\partial x^2},\tag{2}$$

with $\varphi(x,0) = \varphi_0$, $\varphi(0,t) = 0$, and $\varphi(\infty,t) = \varphi_0$ for all t > 0 in the domain of $0 < x < \infty$, where φ_0 is a constant.

- (c) (3%) Solve the differential equation resulting from (b).
- (d) (3%) Which one of the following is correct and helpful to solving this problem?

(A)
$$\mathcal{L}\left[\operatorname{erfc}\left(\frac{x}{2\sqrt{\alpha t}}\right)\right] = \frac{1}{s} \exp\left(-x\sqrt{\frac{s}{\alpha}}\right),$$

(B)
$$\mathcal{L}\left[J_0\left(\frac{x^2}{\alpha}t\right)\right] = \frac{1}{s}\exp\left(-x\sqrt{\frac{s}{\alpha}}\right),$$

(C)
$$\mathcal{L}\left[\cosh\left(\frac{x^2}{\alpha}t\right)\right] = \frac{1}{s}\exp\left(-x\sqrt{\frac{s}{\alpha}}\right)$$
,

(D)
$$\mathcal{L}\left[\sin\left(\frac{x^2}{\alpha}t\right)\right] = \frac{1}{s}\exp\left(-x\sqrt{\frac{s}{\alpha}}\right)$$

(e) (3%) Find the solution to Eq. (2).

國立臺灣大學101學年度碩士班招生考試試題

科目:工程數學(B)

行日·工程数字() 節次: 6

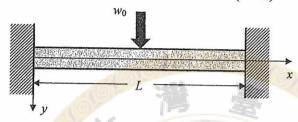
超號・ 222

共 3 頁之第 2 頁

3. (15%) A uniform beam of Length L carries a concentrated load w_0 at x = L/2. The beam is clamped at both ends. Use the Laplace transform to determine the deflection y(x) from

$$EI\frac{d^4y}{dx^4} = w_0 \delta \left(x - \frac{L}{2}\right)$$

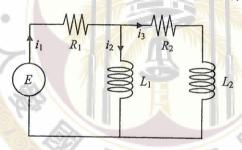
where y(0) = 0, y'(0) = 0, y(L) = 0, y'(L) = 0, and $\delta\left(x - \frac{L}{2}\right)$ is the Dirac delta function.



4. (15%) The system of differential equations for the currents $i_2(t)$ and $i_3(t)$ in the electrical network is

$$\frac{d}{dt} \begin{bmatrix} i_2 \\ i_3 \end{bmatrix} = \begin{bmatrix} -R_1 / L_1 & -R_1 / L_1 \\ -R_1 / L_2 & -(R_1 + R_2) / L_2 \end{bmatrix} \begin{bmatrix} i_2 \\ i_3 \end{bmatrix} + \begin{bmatrix} E / L_1 \\ E / L_2 \end{bmatrix}$$

Solve the system if $R_1 = 2 \Omega$, $R_2 = 3 \Omega$, $L_1 = 1 \text{ h}$, $L_2 = 1 \text{ h}$, E = 60 V, $i_2(0) = 0$, and $i_3(0) = 0$.



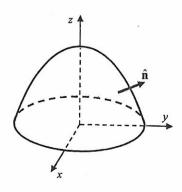
5. (10%) Solve the following differential equation if it is known that two linearly independent solutions of the associated homogeneous differential equation are t and t^2 .

$$t^2 \frac{d^2 N}{dt^2} - 2t \frac{dN}{dt} + 2N = t \left(\ln t \right)$$

6. (8%) Evaluate the surface integral

$$J = \int_{A} \hat{\mathbf{n}} \cdot \nabla \times \mathbf{v} da$$

where $\mathbf{v} = x\hat{\mathbf{j}} - (z+1)\hat{\mathbf{k}}$, A is the surface $z = 4 - 4x^2 - 4y^2$ between z = 0 and z = 4, and $\hat{\mathbf{n}}$ is the unit normal whose direction is shown in the figure.



題號: 222

國立臺灣大學101學年度碩士班招生考試試題

科目:工程數學(B)

節次: 6

共 3 頁之第 3 頁

7. (7%) Determine the Laurent expansion of

$$f(z) = \frac{1}{z(2-z)}$$

about z = 0 in |z| > 2.

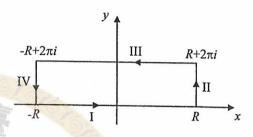
8. (15%) Suppose that 0 < a < 1. In order to evaluate

$$I=\int_{-\infty}^{\infty}\frac{e^{ax}}{1+e^{x}}dx,$$

we first consider the contour integral

$$J = \oint_{\Gamma} \frac{e^{az}}{1 + e^{z}} dz.$$

where Γ , as shown at right, is the counterclockwise rectangular with vertices at -R, R, $R+2\pi i$, and $-R+2\pi i$.



- (a) Find and classify all singular points of $\frac{e^{az}}{1+e^z}$ inside Γ .
- (b) Determine $J = \oint_{\Gamma} \frac{e^{az}}{1 + e^{z}} dz$.
- (c) Given that both line integrals along the two vertical segments (II and IV as shown in the figure) tend to zero as $R \to \infty$ (i.e., $\lim_{R \to \infty} \left| \int_{\mathbb{II}} \frac{e^{az}}{1 + e^z} dz \right| = 0$ and $\lim_{R \to \infty} \left| \int_{\mathbb{IV}} \frac{e^{az}}{1 + e^z} dz \right| = 0$), determine $I = \int_{-\infty}^{\infty} \frac{e^{ax}}{1 + e^x} dx$ using the above results.

試題隨卷繳回