題號: 57

國立臺灣大學101學年度碩士班招生考試試題

科目:幾何 節次: 2

頁之第

1. -0.5

 $x(\theta) = (1 + \frac{1}{n}) \cos \theta + \frac{1}{n} \cos((n-1)\theta)$ $y(\theta)=(1+\frac{l}{n})\sin\theta-\frac{l}{n}\sin((n-1)\theta)$

 $0 \le \theta \le 2\pi$ is not the parametric equation of a hypo-cycloid. n=3, is it a convex curve? n=4, is it a convex curve?

(25/100)

Mathematica® 4.0

Let R be a ruled surface. Through each point $p \in R$, there is a segment 1 of straight line pεl⊆R. Can you prove the Gauss curvature K of R vanishes identically K≡0? If in addition there is another segment 1'≠1 through each point p, $p \in 1 \cap 1'$, $1 \cup 1' \subseteq R$, can you prove R is contained in a plane? (25/100)

3. Let ω^{t} and ω^{2} be linearly independent in a neighborhood U of the origin, $\omega^1 = P(x,y)dx + Q(x,y)dy$, $\omega^2 = R(x,y)dx + S(x,y)dy$, $\det = \begin{bmatrix} P & Q \\ R & S \end{bmatrix} \neq 0$. Can you find a differential $\omega_i^2 = -\omega_2^1$ so that the exterior derivatives and exterior products satisfy dω' = ω2 /ω,

 $d\omega^2 = \omega^1 \wedge \omega_1^2$? If yes, $\omega_1^2 = ?dx + ?dy$. (25/100)

Let G_2 be the fundamental group of a surface of genus 2. G_2 is generated by a_1 , a_2 , b_1 , b_2 satisfying the relation $a_1 a_2 \bar{a_1'} \bar{a_2'} b_1 b_2 \bar{b_1'} b_2' = 1$.

satisfying the relation $a_1a_2\bar{a}_1'\bar{a}_2'b_1b_2'b_3'=$ If G_3 is generated by x_1 , x_2 , y_1 , y_2 , z_1 , z_2 satisfying the relation $x_1 x_2 x_1^{-1} x_2^{-1} y_1 y_2 y_1^{-1} y_2^{-1} z_1 z_2 z_1^{-1} z_2^{-1} = 1$, can you find a subgroup of G_2 isomorphic to G₃? (25/100)

試題隨卷繳回