題號: 54 科目:代數

國立臺灣大學101學年度碩士班招生考試試題

題號: 54

共 / 頁之第 / 頁

杆日·代3 節次: 2

Do all the 6 problems.

(1) (15 pts) Determine the Galois group of $x^4 - 2$ over \mathbb{Q} .

(2) (20 pts) Fix a prime number p, and let \mathbb{F}_p denote a field of p elements. We consider $GL(n, \mathbb{F}_p)$ the group consisting of invertible $n \times n$ matrices with entries in \mathbb{F}_p . How many elements are there in $GL(n, \mathbb{F}_p)$?

Moreover, if we consider $SL(n, \mathbb{F}_p)$ the group consisting of $n \times n$ matrices with determinant = 1 and entries in \mathbb{F}_p . How many elements are there in $SL(n, \mathbb{F}_p)$?

(3) (15 pts) Let $p \neq q$ be distinct prime numbers. Find an integer n with prime factorization of the form n = pq such that

$$2^n \equiv 2 \pmod{n}.$$

- (4) (20 pts) Consider the polynomial $f(x) = x^4 x^3 + x^2 x + 1$.
 - (a) Show that f(x) is irreducible in $\mathbb{Q}[x]$.
 - (b) Let $\mathbb{F}_5 = \mathbb{Z}/5\mathbb{Z}$ be a field of 5 elements. Is f(x) reducible or irreducible in $\mathbb{F}_5[x]$? Explain why.
- (5) (15 pts) By a complex

$$0 \stackrel{\varphi_0}{\rightarrow} V_1 \stackrel{\varphi_1}{\rightarrow} V_2 \stackrel{\varphi_2}{\rightarrow} \dots \stackrel{\varphi_{n-1}}{\rightarrow} V_n \stackrel{\varphi_n}{\rightarrow} 0$$

of vector spaces over a field F, we mean that V_i are vector spaces over F for i = 1, ..., n, φ_i are linear transformations of vector spaces for i = 0, ..., n and

$$\varphi_i \circ \varphi_{i-1} = 0$$

for i = 1, ..., n.

- (a) Show that $im(\varphi_{i-1}) \subset ker(\varphi_i)$.
- (b) We define $H_i := \ker(\varphi_i)/\operatorname{im}(\varphi_{i-1})$. Suppose that V_i are finite dimensional vector spaces for i = 1, ..., n, we can define

$$\chi_V := \sum (-1)^i \dim V_i,$$

$$\chi_H := \sum (-1)^i \dim H_i.$$

Show that $\chi_V = \chi_H$.

(6) (15 pts) Give examples of four non-isomorphic non-abelian groups of order 24. Verify your answer.

試題隨卷繳回