題號: 59

國立臺灣大學101學年度碩士班招生考試試題

59

頁之第 頁

科目:數值分析

節次: 2

1. (25 points) Consider the fixed point iteration

$$x_{n+1} = (\alpha + 1)x_n - x_n^2, \qquad n = 0, 1, \dots,$$

where α satisfying $1/2 \le \alpha \le 1$ is given.

- (a) Show that the iteration converges for any initial guess x_0 satisfying α $1/5 \le x_0 \le \alpha + 1/5.$
- (b) Assume that the iteration converges, find the value of α for which the method converges quadratically.
- 2. (25 points)
 - (a) Let $A = \begin{bmatrix} 1 & 2 \\ 2 & 5 \end{bmatrix}$. Compute the *LU* factorization of *A* without pivoting.
 - (b) Let $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ and assume $a \neq 0$. Let A = LU be the LU factorization of A without pivoting. Show that the pivots of A are positive if and only if A is symmetric positive definite.
- 3. (25 points) Consider the quadrature of the form

$$\int_{-1}^{1} |x| f(x) dx \approx A (f(x_1) + f(x_2)).$$

Determine the constants A, x_1 , and x_2 so that this quadrature has the highest precision with respect to the function f(x). What is the degree of precision?

- 4. (25 points) Let $a = x_0 < x_1 < \cdots < x_m = b$ be a mesh on [a, b]. Let l_i be defined on [a, b] as follows:
 - 1. l_i is piecewise linear on [a, b],
 - 2. $l_i(x_i) = 1$,
 - 3. $l_i(x_i) = 0 \ (j \neq i)$.
 - (a) Let f(x) be continuous on [a, b]. Determine the values of coefficients c_i such that the function

$$l(x) = \sum_{i=0}^{m} c_i l_i(x)$$

satisfies $l(x_i) = f(x_i)$.

(b) Let $h = \max_i \{x_{i+1} - x_i\}$. Let f be twice differentiable on [a, b]. Derive an upper bound on |f(x) - l(x)|, and show that $\lim_{h\to 0} |f(x) - l(x)| = 0$. Here l is the function defined in part a.