國立臺灣師範大學 105 學年度碩士班招生考試試題

科目:基礎數學

適用系所:數學系

注意:1.本試題共 2 頁,請依序在答案卷上作答,並標明題號,不必抄題。2.答案必須寫在指定作答區內,否則依規定扣分。

Part I: Calculus

1. (28 points) Evaluate the integrals

(a)
$$\int \cos \sqrt{x} dx$$

(b)
$$\int xe^{x^2}dx$$

(c)
$$\int \frac{1}{(x-1)x^2} dx$$

(d)
$$\int_{1}^{25} \frac{\log_5 x}{x} dx$$

- 2. (3 points) Let $\int_{x^2}^2 f(t^3)dt = \frac{1}{2}\cos(\frac{\pi}{2}x)$, where f is a continuous function. Compute f(1).
- 3. (3 points) Find a power series for $\sin(x^2)$, centered at 0.
- 4. (4 points) Find a real number a such that the following limit is correct.

$$\lim_{x \to 0} \left[\left(x^2 - x \right) \left(\cos \left(\frac{1}{x} \right) + 1 \right)^2 + a \right] = 1$$

- 5. (4 points) Let $f(x) = 5x(1 5x^2)$ and $g = \underbrace{f \circ \cdots \circ f}_{100}$. Find $g'(\sqrt{6}/5)$. Note that $\underbrace{f \circ \cdots \circ f}_{3}$ denotes f(f(f(x))).
- 6. (3 points) Let

$$\int_{0}^{1} \int_{1-y}^{\sqrt{1-y^{2}}} f(x,y) dx dy = \int_{a}^{b} \int_{c}^{d} f(x,y) dy dx,$$

where f be a continuous function. Find a, b, c and d.

7. (5 points) Evaluate the integral

$$\int_2^4 \int_{2/y}^{y/2} \sqrt{\frac{y}{x}} e^{\sqrt{xy}} dx dy.$$

(下頁尚有試題)

國立臺灣師範大學 105 學年度碩士班招生考試試題

Part II: Linear algebra

8. (10 points) Given 5 points (a_1, b_1) , (a_2, b_2) , (a_3, b_3) , (a_4, b_4) , (a_5, b_5) in the plane R^2 , where a_1, a_2, a_3, a_4, a_5 are distinct. Use matrix methods to show that there is a polynomial f(x) of degree at most 4, such that the above 5 points lie on the graph of y = f(x).

- 9. Let P_2 be the vector space of all polynomials of degree at most 2, and $T: P_2 \longrightarrow P_2$ be the linear transformation defined by T(f(x)) = 3f'(x) + f(x) for all $f(x) \in P_2$. Given two ordered bases $B_1 = \{1, x, x^2\}$ and $B_2 = \{1, x, x + x^2\}$ of the vector space P_2 .
- (a) (4 points) Find the matrix representation A of T relative to B_1 and B_2 .
- (b) (3 points) Use the matrix A to compute $T(2x^2 x + 1)$.
- (c) (3 points) Find the general formula of $T^{-1}(ax^2 + bx + c)$.
- 10. (10 points) A hyperplane in R^n is a subspace of dimension n-1. Prove that S is a hyperplane in R^n if, and only if, there is a vector $a \in R^n$ such that $S = \{x \in R^n \mid \langle x, a \rangle = 0\}$, where $\langle \cdot, \cdot \rangle$ denotes the usual inner product on R^n .

11. Let
$$A = \begin{bmatrix} 1 & -1 & -1 \\ -1 & 1 & -1 \\ -1 & -1 & 1 \end{bmatrix}$$
.

- (a) (5 points) Find an orthogonal matrix C such that $C^{-1}AC = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix}$.
- (b) (5 points) Find an invertible matrix P such that $P^3=A$.
- 12. (10 points) Let V and W be two vector spaces having the same finite dimension. Prove that a linear transformation $T:V\longrightarrow W$ is one-to-one if , and only if, T is onto.

(試題結束)