考試科目統計學B 41221 所 別金融學系 考試時間 2 月27 日(六·)第二節

- 1. Let X and Y be independent Poisson random variables with parameters λ_X and λ_Y , respectively.
 - (a) Show that $P(X + Y = n) = \sum_{i=0}^{n} P(X = i)P(Y = n i)$. (5%)
 - (b) Use part (a) to prove that X + Y is a Poisson random variable with a parameter $\lambda_X + \lambda_Y$. (5%)
 - (c) Please calculate the conditional probability and conditional expectation of X given that X + Y = n.

 (10%)
- 2. A stochastic process $\{X(t), t \ge 0\}$ is said to be a compound Poisson process if it can be represented as

$$X(t) = \sum_{i=1}^{N(t)} Y_i, \qquad t \ge 0$$

where $\{N(t), t \ge 0\}$ is a Poisson process with a arrival rate λ , and $\{Y_i, i \ge 0\}$ is a family of independent and identically distributed random variables from normal density with mean μ and variance σ^2 which are also independent of $\{N(t), t \ge 0\}$.

- (a). Please find the mean of $\exp\{X(T)\}$ at the time T. (5%)
- (b). Please show $\exp\{X(T) \lambda(k-1)T\}$ to be martingale, where $k = \exp\{\mu + 0.5\sigma^2\}$. (5%)
- (c). Please find the estimators λ , μ and σ^2 when you have the data of 2 samples with the arrival numbers $(n_1, n_2, ..., n_T)$ and the values $\{(y_1, y_2, ..., y_{n_1}), (y_1, y_2, ..., y_{n_2}), ..., (y_1, y_2, ..., y_{n_T})\}$? (10%)
- (d). If the arrival numbers are missing or unobservable, how to estimate λ , μ and σ^2 ? (10%)

4-12-1	1(.六)第二	月27日(2	考試時間	金融學系	別	所	41221	統計學B	目	科	試	考
--------	---------	-------	---	------	------	---	---	-------	------	---	---	---	---

3. Let the dynamics of the stock price be $S(T) = S(0) \exp\left\{(r - \frac{1}{2}\sigma^2)T + \sigma B(T)\right\}$ under the risk neutral measure at time T, where S(0) denotes the stock price at time 0, r is the riskless rate, σ is the volatility of the log stock price, and $\{B(t), t \ge 0\}$ is a Brownian motion process with B(0) = 0. B(t) is normal distribution with mean 0 and variance t at time t, where its density function is given by

$$f_{\iota}(b) = \frac{1}{\sqrt{2\pi t}} e^{-b^2/2t},$$

and the process B(t) has stationary and independent increments, where $B(t_1)$, $B(t_2) - B(t_1)$,..., $B(t_n) - B(t_{n-1})$ for $t_1 < ... < t_n$ are independent and $B(t_k) - B(t_{k-1})$ is normal with mean 0 and variance $t_k - t_{k-1}$.

- (a). Please describe what is the risk-neutral probability measure and the physical (real) probability measure?
- (b). Please find the mean and variance of S(T) under the risk-neutral probability measure. (10%)
- (c). If the underlying asset of the futures is the stock, what is the theoretical value of the futures with the maturity T at time 0 under the risk-neutral probability measure? (10%)
- (d). If the underlying asset of the option is the stock, what is the theoretical value of the stock option with strike price K and maturity T at time 0 under the risk-neutral probability measure (Hint: To derive Black-Scholes Option Pricing Formula.) (10%)
- (e). Please find the estimators of μ and σ by the maximum likelihood estimation (MLE) at the physical (real) probability measure based on the stock prices data for n days. (10%)