考試科目數理統計學所別統計學系考試時間2月27日(六)第三節

- 1. A recent study reports that the average time spent online is 7 hours per day.
- (a) What is the probability that time spent online tomorrow will exceed 12 hours?

(4%)

- (b) If the variance of time spent on line per day is 16, what is the probability that time spent online tomorrow will be between 2 to 12 hours? (6%)
- 2. The joint distribution of pollutant standards index (PSI) collected under without using an air filter (X_1) and with using air filter (X_2) is

$$f(x_1, x_2) = \begin{cases} 1/4, & 0 \le x_1 \le 4, 0 \le x_2 \le 2, 2x_2 \le x_1 \\ 0, & \text{elsewhere} \end{cases}$$

(a) Find $E(X_2 \mid x_1)$ and $V(X_2 \mid x_1)$.

(10%)

- (b) Let $W = X_1 X_2$ be the reduction in PSI due to using an air filter. Find the probability density function of W, and E(W). (10%)
- 3. Let X_1, \dots, X_n be a random sample from $f(x) = \frac{(\ln \beta)^x}{x!\beta}$, $x = 0,1,\dots, \beta > 1$.
- (a) Find the complete sufficient statistic for β , and the MLE of β .

(10%)

(b) Find the UMVUEs of $\ln \beta$ and $(\ln \beta)^2$, respectively.

(6%, 8%)

- 4. Let X_1, \dots, X_n be a random sample from a continuous distribution function F(x), and F'(x) = f(x). Let $X_{(k)}$ denote the k^{th} order statistic.
- (a) For some α , where $0 < \alpha < 1$, let x_{α} satisfy $F(x_{\alpha}) = \alpha$ and $f(x_{\alpha}) > 0$. Moreover, $m/n \to \alpha$.
- (a1) Show that $F(X_{(m)})$ converges in probability to a constant and find that constant.

(6%)

(a2) Find the limiting distribution of $\sqrt{n}(F(X_{(m)}) - \alpha)$.

(6%)

(Hint: The limiting distribution of $\sqrt{n}(X_{(m)}-x_{\alpha})$ is $N(0,\alpha(1-\alpha)/[f(x_{\alpha})]^2)$.)

(b) Find the limiting distribution of $Y_n = n[1 - F(X_{(n)})]$.

(10%)

- 5. Let X_1, \dots, X_n be a random sample from $f(x) = \frac{\beta x^{\beta-1}}{\lambda} \exp(-\frac{x^{\beta}}{\lambda})$, x > 0, $\lambda > 0$, and β is known.
- (a) Find the likelihood ratio size α test of $H_0: \lambda = \lambda_0$ vs. $H_1: \lambda \neq \lambda_0$.

(10%)

(b) Find an equal tailed $100(1-\alpha)\%$ confidence interval for λ .

(6%)

(c) Let the prior of λ be $\pi(\lambda) = \frac{b^a}{\Gamma(a)\lambda^{a+1}} \exp(-\frac{b}{\lambda}), \quad \lambda > 0, \quad a, b > 0.$

Find the posterior distribution and the posterior mean of λ .

(8%)

主 一、作答於試題上者,不予計分。

二、試題請隨卷繳交。