101

考試科目	數理統計學	M 統計學系	考試時間 2月26日(日)第三	節
------	-------	--------	-----------------	---

- 1. The number of typing errors per page Y of a research assistant is known to have a Poisson distribution with mean λ . However, λ varies from page to page and has an exponential distribution with mean five.
 - a. Find the expected number of typing errors per page of the research assistant. (5 pts)
 - b. Find the probability density function for Y. (5 pts)
- 2. In the production of a certain type of copper, two types of copper powder (A and B) are mixed together and heated for a certain length of time. For a fixed volume of heated copper, the producer measures Y_1 , the proportion of the volume due to solid copper, and Y_2 , the proportion of the solid mass due to Type A powder. Assume that the probability density functions for Y_1 and Y_2 are

$$f_1(y_1) = \begin{cases} 6y_1(1-y_1), & 0 < y_1 < 1 \\ 0, & elsewhere \end{cases}, \quad f_2(y_2) = \begin{cases} 3y_2^2, & 0 < y_2 < 1 \\ 0, & elsewhere \end{cases}.$$

 Y_1Y_2 is then the proportion of the sample volume due to Type A powder. Assume that Y_1 and Y_2 are independent.

a. Find the probability density function for Y_1Y_2 .

(10 pts)

b. Find $E(Y_1Y_2)$.

- (10 pts)
- 3. Let Y_1, \ldots, Y_n be a random sample from a population with probability density function

$$f(y \mid \theta) = \begin{cases} cy^{c-1} / \theta^{c}, & 0 \le y \le \theta, \\ 0, & elsewhere \end{cases}$$

where c > 0 is a known constant.

a. Find the MLE (Maximum Likelihood Estimator) of θ .

(5 pts)

b. Find a minimal sufficient statistic for θ .

- (5 pts)
- c. Find a MVUE (Minimum Variance Unbiased Estimator) for θ .
- (10 pts)

考 試 科 目 數理統計學	所别統計學至	考試時間 2月26日(日)第三節
---------------	--------	------------------

4. Let X_1, \cdots, X_n be a random samples from an exponential distribution with mean $1/\lambda$, $f(x) = \lambda \exp(-\lambda x)$ for x > 0, and assume that the prior density of λ also is exponential with mean $1/\theta$ where θ is known.

- (a) Find the posterior distribution of $\lambda | x_1, \dots, x_n$. (7%)
- (b) Using squared error loss, find the Bayes estimator of λ . (7%)
- (c) Using absolute error loss, find the Bayes estimator of $1/\lambda$. (6%)

5. Consider a random sample of size n from a distribution with $f(x)=(\frac{2x}{\theta})e^{-x^2/\theta}$ if

x>0, zero otherwise. Find a uniformly most powerful test (UMPT) of size $\,\alpha\,$ of H_0 : $\theta \leq \theta_0\,$ vs. H_1 : $\theta > \theta_0.$ (10%)

6. Assume Y_1, \dots, Y_n are uncorrelated random variables with $E(Y_i) = \beta_0 + \beta_1 x_i$ and $Var(Y_i) = \sigma^2$, and that $\hat{\beta}_0$ and $\hat{\beta}_1$ are the Least Squares estimators of β_0 and β_1 . Calculate each of the following:

- (a) $Cov(\widehat{\beta}_1, \overline{Y})$. (5%)
- (b) $E(\hat{\beta}_0^2)$. (5%)
- (c) $E(\hat{\beta}_1^2)$. (5%)

(d) Show that $\widehat{\sigma}^2 = \sum_{i=1}^n (Y_i - \widehat{\beta}_0 - \widehat{\beta}_1 x_i)^2 / (n-2)$ is an unbiased estimator of σ^2 .

(5%)