| 考 | 試 | 科 | 目 | 数理統計學
ひ いけしろ | 所 | 別 | 統計 | 考 | 試明 | 手 間 | 2月28日(六)第3節 | |---|---|---|---|------------------------|---|---|----|---|----|-----|-------------| | 1 | | | 1 | 4141) | ł | | | i | | | | - 1. (25pts) Let Y~ Uniform(0, 1). Let $X = \theta Y^{1/3}$. Suppose that $X_1, X_2, ..., X_n$ are i.i.d. with distribution same as X. - (a) (5pts) Find the probability density function of X and the cumulative distribution function of $X_{(n)}$. - (b) (5pts) Obtain a complete and sufficient statistic for θ . - (c) (5pts) Obtain the MLE $\hat{\theta}$ of θ . - (d) (5pts) Find $E(\hat{\theta})$ and derive an unbiased estimator for θ . - (e) (5pts) Find UMVUE of θ . - 2. (10pts) Let $X_1, X_2, ..., X_n$ be i.i.d. random variables from Gamma (α, β) distribution, where $\beta > 0$ is the unknown parameter and $\alpha > 0$ is a known constant. Show that $\sqrt{n}(\hat{\beta} \beta)$ converges to a non-degenerate asymptotic distribution as $n \to \infty$ and identify the distribution. - 3. (10pts) Suppose that X has pdf $f(x|\theta) = 2\theta(1-2x) + 2x$ on [0,1] for $\theta \in \Theta = [0,1]$. A Bayesian wants to test H_0 : $\theta \le 0.4 vs H_a$: $\theta > 0.4$. If the Bayesian's prior distribution is uniform on [0,1], what is the pearson's (0-1 loss optimal) test? - 4. (10pts) Let the random variable X has p.d.f $f(x; \theta) = \frac{1}{\theta^2} x e^{-\frac{x}{\theta}}, x > 0$, (and 0 otherwise), $\theta \in \Omega = (0, \infty)$. What are the $E_{\theta} \tilde{\theta}_n$ and $\sigma_{\theta} (\tilde{\theta}_n)$. $\tilde{\theta}_n$ is the moment estimator of θ , $\tilde{\theta}_n = \tilde{\theta}_n (X_n)$, $X_n = (X_1, X_2, ..., X_n)$. - 5. (45pts) Let $X_1, X_2, ..., X_n$ be i.i.d. random variables from the Uniform (0, 1), $$Y_n = (\prod_{i=1}^n X_i)^{-\frac{1}{n}}$$, and $Z = X_{(n)} - X_{(1)}$. - (a)(20pts) Show that $\sqrt{n}(Y_n e) \Rightarrow N(0, e^2)$. - (b)(25pts) Derive the probability density function of Z. (20pts). Is Z independent of $X_{(n)}$? (5pts). 一、作答於試題上者,不予計分。