考	試	科	目	数理統計學 ひ いけしろ	所	別	統計	考	試明	手 間	2月28日(六)第3節
1			1	4141)	ł			i			

- 1. (25pts) Let Y~ Uniform(0, 1). Let $X = \theta Y^{1/3}$. Suppose that $X_1, X_2, ..., X_n$ are i.i.d. with distribution same as X.
 - (a) (5pts) Find the probability density function of X and the cumulative distribution function of $X_{(n)}$.
 - (b) (5pts) Obtain a complete and sufficient statistic for θ .
 - (c) (5pts) Obtain the MLE $\hat{\theta}$ of θ .
 - (d) (5pts) Find $E(\hat{\theta})$ and derive an unbiased estimator for θ .
 - (e) (5pts) Find UMVUE of θ .
- 2. (10pts) Let $X_1, X_2, ..., X_n$ be i.i.d. random variables from Gamma (α, β) distribution, where $\beta > 0$ is the unknown parameter and $\alpha > 0$ is a known constant. Show that $\sqrt{n}(\hat{\beta} \beta)$ converges to a non-degenerate asymptotic distribution as $n \to \infty$ and identify the distribution.
- 3. (10pts) Suppose that X has pdf $f(x|\theta) = 2\theta(1-2x) + 2x$ on [0,1] for $\theta \in \Theta = [0,1]$. A Bayesian wants to test H_0 : $\theta \le 0.4 vs H_a$: $\theta > 0.4$. If the Bayesian's prior distribution is uniform on [0,1], what is the pearson's (0-1 loss optimal) test?
- 4. (10pts) Let the random variable X has p.d.f $f(x; \theta) = \frac{1}{\theta^2} x e^{-\frac{x}{\theta}}, x > 0$, (and 0 otherwise), $\theta \in \Omega = (0, \infty)$.

 What are the $E_{\theta} \tilde{\theta}_n$ and $\sigma_{\theta} (\tilde{\theta}_n)$. $\tilde{\theta}_n$ is the moment estimator of θ , $\tilde{\theta}_n = \tilde{\theta}_n (X_n)$, $X_n = (X_1, X_2, ..., X_n)$.
- 5. (45pts) Let $X_1, X_2, ..., X_n$ be i.i.d. random variables from the Uniform (0, 1),

$$Y_n = (\prod_{i=1}^n X_i)^{-\frac{1}{n}}$$
, and $Z = X_{(n)} - X_{(1)}$.

- (a)(20pts) Show that $\sqrt{n}(Y_n e) \Rightarrow N(0, e^2)$.
- (b)(25pts) Derive the probability density function of Z. (20pts). Is Z independent of $X_{(n)}$? (5pts).

一、作答於試題上者,不予計分。