考 試 科 目 統計學(A) 所 別 金融學系金融管理組 考試 時間 2月28日(六)第3節

- 1. Hypothesis testing involves a set of procedures to decide whether a statistical hypothesis should be rejected.
 - (a) (10%) Explain in words what p-value is and why we reject the null hypothesis when the p-value is less than the size of the test.
 - (b) (5%) In some applications, the distribution of test statistic could be non-standard, i.e. not a known distribution. Describe how you would construct the associated probability table for statistical inference in this situation.
- 2. Consider a linear model $Y_i = \beta X_i + u_i$, i = 1, 2, ..., n and $u_i | X_i \sim N(0, \sigma^2)$.
 - (a) (5%) The sample moment condition $\sum_{i=1}^{n} \widehat{u}_i = 0$ might be used to estimate β . Use this moment condition to derive an estimator for the unknown parameter β .
 - (b) (5%) Another sample moment condition $\sum_{i=1}^{n} \widehat{u}_i X_i = 0$ might also be used to estimate the model. Use this moment condition to derive another estimator for β .
 - (c) (10%) Which one of the above is a better estimator? Prove your answer.
- 3. Let $X_1, X_2, ..., X_n$ denote a random sample of size $n \geq 2$ from $N(\mu, \sigma^2)$.
 - (a) (10%) Let \overline{X} be the sample average of X. Show that $n(\overline{X} \mu)^2 / \sigma^2$ is independent of $\sum_{i=1}^{n} (X_i \mu)^2 / \sigma^2$.
 - (b) (10%) Let $S^2 = (1/n) \sum_{i=1}^n (X_i \overline{X})^2$. Derive the distribution of nS^2/σ^2 and its parameter(s).
 - (c) (10%) Let $Y_1, Y_2, ..., Y_n$ be another random sample of size n with $E(Y_i) = \mu_Y$ and $Var(Y_i) = \sigma_Y^2$. Find the constant a such that $S_Y^2 = (1/n) \sum_{i=1}^n (Y_i \overline{Y})^2 \xrightarrow{p} a$.
- 4. Consider a multivariate linear model $Y_i = \mathbf{X}_i'\boldsymbol{\beta} + u_i$ where $\boldsymbol{\beta}$ is a $k \times 1$ vector of coefficients, i = 1, 2, ..., n. The value of Y_i is either 0 or 1 and $E(u_i|\mathbf{X}_i) = 0$.
 - (a) (10%) Show that $Var(u_i|X_i)$ must be heteroskedastic, i.e., not a constant.

註

一、作答於試題上者,不予計分。

二、試題請隨卷繳交。

國立政治大學 104 學年度碩士班招生考試試題

第2頁,共2頁

考	计試	科	目		所	別	金融學系金融管理組	考試時間	2月28日(六)第3節
1				41211	l			<u> </u>	

- (b) (5%) Is linear model appropriate for statistical analysis in this case? Explain.
- 5. Consider a random variable $X_{t+1} = \beta G_{t+1}^{-\gamma}$ and $\ln G_{t+1} = g + \epsilon_{t+1}$ where g, β and γ are all constants and $\epsilon_{t+1} \sim N(0, \sigma^2)$ is independent over time.
 - (a) (10%) Is the process for $\ln G_{t+1}$ stationary? Prove your answer.
 - (b) (10%) Let $Y_{t+1} = 1/E(X_{t+1})$. Express $\ln Y_{t+1}$ as a function of β , γ , g and σ^2 .

一、作答於試題上者,不予計分。