國立臺灣師範大學104學年度碩士班招生考試試題

科目:機率與統計 適用系所: 數學系

注意: 1.本試題共 2 頁,請依序在答案卷上作答,並標明題號,不必抄題。2.答案必須寫在指定作答區內,否則不予計分。

1. $(20 \, \hat{\sigma})$ John and Mary both visit a convenient store once every day to collect miniatures. John wants to have "Snoopy" in series A, whereas Mary is interested in "Hello Kitty" in series B. Miniatures in series A and B are randomly distributed to the customers independently. Suppose every day "Snoopy" can be obtained with probability p, and "Hello Kitty" can be obtained with probability q. Let X denote the number of days it takes for John to get his first "Snoopy" and Y the number of days it takes for Mary to get her first "Hello Kitty".

- (a) Find the probability distribution of X.
- (b) Find the probability distribution of the minimum of X and Y, i.e., $\min(X, Y)$.
- (c) Find the probability of X = Y, i.e., P(X = Y).
- (d) Find the expectation of X given $X \leq Y$, i.e., E(X|X < Y).
- 2. $(20 \hat{\pi})$ Let Y be a uniform random variable on (0,1). For a given Y=y, X follows a binomial distribution, Binomial (10,y).
 - (a) Find the probability distribution of X.
 - (b) Given x = 8, find the conditional probability density function of Y.
- 3. (20 $\hat{\pi}$) If gene frequencies are in equilibrium, the three genotypes AA, Aa, and aa occur with probabilities θ^2 , $2\theta(1-\theta)$ and $(1-\theta)^2$, $0<\theta<1$, respectively. A random sample of n people are taken, and the numbers observed for the three genotypes are, respectively, X, Y and Z with X + Y + Z = n,
 - (a) Find the maximum likelihood estimator of θ .
 - (b) Consider the test statistic T = 2X + Y. Given that T has a binomial distribution with parameters 2n and θ . Find a uniformly most powerful (UMP) test, with the level of significance α , for testing $H_0: \theta = \theta_0$ against $H_1: \theta = \theta_1$ for some $\theta_1 < \theta_0$ based on the test statistic T.

(下頁尚有試題)

國立臺灣師範大學 104 學年度碩士班招生考試試題

- 4. (20 $\hat{\sigma}$) Let X_1, X_2, \dots, X_n be random variable from a population with probability density function $f(x; \theta) = e^{(\theta x)}$, where $x > \theta$, $-\infty < \theta < \infty$, and $f(x; \theta) = 0$, otherwise. Let Y denote the smallest order statistic.
 - (a) Show that Y is a sufficient statistic for θ .
 - (b) If Y c is used to estimate θ for some constant c. Find the value of c that minimises the mean square error of Y c.
- 5. (20\$\alpha\$) Consider a simple linear regression for $Y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$, $i = 1, 2, \dots, n$, where x_i 's are fixed constants and $\varepsilon_i \sim^{\text{iid}} \text{Normal}(0, \sigma^2)$. The least square estimators $\hat{\beta}_0$ and $\hat{\beta}_1$ are used to estimate the intercept and slope, respectively. Let $\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$ be the fitted values.
 - (a) Show that $\sum_{i=1}^{n} Y_i = \sum_{i=1}^{n} \hat{Y}_i$.
 - (b) Let SSR be the regression sum of squares SSR = $\sum_{i=1}^{n} (\hat{Y}_i \overline{Y})^2$, where \overline{Y} is the mean of Y. Find the expectation of SSR/1.
 - (c) Which of the following statement is true. 「可單選或複選,全對才給分」
 - (a) Residuals $e_i = Y_i \hat{Y}_i$, are statistically independent with Y_i .
 - \bigcirc Residuals are statistically independent with \hat{Y}_i .
 - © $\hat{\beta}_0$ and $\hat{\beta}_1$ are statistically independent.
 - $\hat{\beta}_1$ and \overline{Y} are statistically independent.
 - (e) The fitted line always passes through the point $(\overline{x}, \overline{Y})$.
 - (d) If a 95% confidence interval for β_1 was (-5.65, 2.61). Which of the following statement is true. 「可單選或複選,全對才給分」
 - ⓐ Reject the null hypothesis at $\alpha = 0.05$ for testing $H_0: \beta_1 = 0$ versus $H_1: \beta_1 \neq 0$.
 - ① Do not reject the null hypothesis at $\alpha = 0.05$ for testing $H_0: \beta_1 = 0$ versus $H_1: \beta_1 \neq 0$.
 - © When constructing the confidence interval for β_1 , the degrees of freedom for the t-value is n-1.
 - (d) When constructing the confidence interval for β_1 , the degrees of freedom for the t-value is n-2.
 - (e) We could conclude that there is no relationship between Y and x at $\alpha = 0.05$.

(試題結束)