國立臺灣師範大學 104 學年度碩士班招生考試試題

科目:基礎數學 適用系所:數學系

注意:1.本試題共 2 頁,請依序在答案卷上作答,並標明題號,不必抄題。2.答案必須寫在指定作答區內,否則不予計分。

Part I: Calculus

1. (7 points) Find the equation of the tangent line to $y = (\ln x)^{\cos x}$ at (e, 1).

- 2. (7 points) In using the ϵ, δ definition to prove that $\lim_{x\to 0} x^2 = 1$, where $\epsilon = 1$, what is the largest value that δ can have?
- 3. (7 points) Suppose $f(x) = (x^x)^x$. Find f'(x).
- 4. (7 points) Calculate $\lim_{\theta \to 0} \frac{\sin(\cos \theta)}{\sec \theta}$.
- 5. (7 points) Calculate $\int_{1}^{3} \frac{dx}{\sqrt{x}(1+x)}$.
- 6. (7 points) Suppose $g(x) = \sin(x^3)$. Find $g^{(9)}(0)$.
- 7. (8 points) Determine whether the vector filed is conservative. If it is, find a potential function.
 - (a) $\mathbf{F}(x, y) = e^x(\cos y \mathbf{i} \sin y \mathbf{j})$

(b)
$$\mathbf{F}(x,y) = \frac{\mathbf{i} + \mathbf{j}}{\sqrt{x^2 + y^2}}$$

- (c) $\mathbf{F}(x, y, z) = xy^2z^2\mathbf{i} + x^2yz^2\mathbf{j} + x^2y^2z\mathbf{k}$
- (d) $\mathbf{F}(x, y, z) = ye^z\mathbf{i} + ze^x\mathbf{j} + xe^y\mathbf{k}$

(下頁尚有試題)

國立臺灣師範大學 104 學年度碩士班招生考試試題

Part II: Linear algebra

8. Let
$$A = \begin{bmatrix} 1 & 1 & 2 & 0 & 0 \\ 0 & 1 & 1 & -1 & -1 \\ 1 & 1 & 2 & 1 & 2 \\ 2 & 1 & 3 & -1 & -3 \end{bmatrix}$$

(a) (5 points) Find the LU decomposition of A.

(b) (7 points) Let
$$b_1 = \begin{bmatrix} 2 \\ 0 \\ 1 \\ 4 \end{bmatrix}$$
, $b_2 = \begin{bmatrix} 2 \\ 0 \\ 1 \\ 5 \end{bmatrix}$, $b_3 = \begin{bmatrix} 2 \\ 0 \\ 1 \\ 6 \end{bmatrix}$, $b_4 = \begin{bmatrix} 2 \\ 0 \\ 1 \\ 7 \end{bmatrix}$.

Decide for which b_i such that $Ax = b_i$ is consistent, then solve the linear system.

- 9. (8 points) Let V be the plane in \mathbb{R}^3 defined by the equation x-2y+z=0. Find the projection matrix on V.
- 10. Let P_3 denote the vector space of polynomials of degree at most 3. Consider the linear transformation $T: P_3 \to P_3$ given by

$$T(f)(t) = 2f(t) + (1-t)f'(t).$$

- (a) (4 points) Give the matrix representation of T with respect to the ordered basis $\{1, t-1, (t-1)^2, (t-1)^3\}$.
- (b) (6 points) Determine Ker(T) and image(T). Give your reasoning.
- 11. (10 points) If $a_0 = 0$, $a_1 = a_2 = 1$, and $a_{k+1} = 2a_k + a_{k-1} 2a_{k-2}$, for $k \ge 2$, determine the formula for a_k .
- 12. Let x, y be vectors in \mathbb{R}^n .
 - (a) (6 points) Prove the Cauchy-Schwarz Inequality by minimizing the quadratic function $Q(t) = ||x ty||^2$, for $t \in \mathbb{R}$.
 - (b) (4 points) Prove the triangle inequality : $||x + y|| \le ||x|| + ||y||$.

(試題結束)