國立中央大學104學年度碩士班考試入學試題

所別:企業管理學系碩士班 一般甲組(一般生)

企業管理學系碩士班 一般乙組(一般生)

企業管理學系碩士班 一般丁組(一般生

企業管理學系碩士班 一般戊組(一

本科考試禁用計算器

科目:<u>統計學 共 2 頁 第 1 頁</u>

*請在答案卷(卡)內作答

- 1. (6%) If X and Y are two independent random variables, X and Y have zero covariance.
 - (A) True (B) False.
- 2. (6%) If two random variables X and Y have zero covariance, X and Y are independent.
 - (A) True (B) False.
- 3. (6%) Figure 1 gives four different probability density plots. Which one is most likely from a normal distribution?
 - (A) Plot 1 (B) Plot 2 (C) Plot 3 (D) Plot 4.

Figure 1: Probability density plots

- 4. (6%) In Figure 1, the distribution that produces Plot 2 is
 - (A) Symmetric (B) Skewed to the right (C) Skewed to the left (D) Bimodal.
- 5. (6%) If a random variable has mode = 4, median = 3.4, and mean = 2, it is most likely that this random variable is
 - (A) Symmetric (B) Skewed to the right (C) Skewed to the left (D) Bimodal.
- 6. (6%) A Type I error is rejecting a true null hypothesis.
 - (A) True (B) False.
- 7. (6%) Let X be a binomial distribution with parameters N and probability p. Which of the following transformation of X is approximately a standard normal distribution when N becomes large?

(A)
$$\frac{X-Np}{\sqrt{p(1-p)}}$$
 (B) $\frac{X-p}{\sqrt{p(1-p)}}$ (C) $\frac{X-p}{\sqrt{Np(1-p)}}$ (D) $\frac{X-Np}{\sqrt{Np(1-p)}}$

- 8. (6%) A city bus has a capacity of 36 people. The weights of the passengers have a distribution with a mean of 50 kilograms and a standard deviation of 5 kilograms. If the bus is full, what is the chance that the total weight in the bus is larger than 1890 kilograms?
 - (A) 0.8413 (B) 0.1587 (C) 0.0228 (D) 0.0013.

Hint: Let $\Phi(\cdot)$ be the cumulative distribution function of the standard normal distribution. $\Phi(-1) = 0.1587$, $\Phi(-2) = 0.0228$, and $\Phi(-3) = 0.0013$.

國立中央大學104學年度碩士班考試入學試題

所別:企業管理學系碩士班 一般甲組(一般生)

企業管理學系碩士班 一般乙組(一般生)

企業官理學系領士班 一般「組(一般生) 企業管理學系碩十班 一般戊組(一般生)

十 4 4 4 4 4 四 4 6 8

2頁第2頁

II. Please write down your answers in the answer sheet (52%).

1. (27%) The following table gives information on ages and cholesterol levels for a random sample of 10 men

Age	58	69	43	39	63	$\overline{52}$	47	31	74	36
Cholesterol level	189	235	193	177	154	191	213	165	198	181

Take age as an independent variable (x) and cholesterol level (y) as a dependent variable and consider a linear regression. It is known n=10, $\bar{x}=\sum x/n=51.2$, $\bar{y}=\sum y/n=189.6$ $\sum x^2=28110$, $\sum y^2=364280$, $\sum xy=98307$, $SS_{xx}=\sum x^2-n\bar{x}^2=1895.6$, $SS_{yy}=\sum y^2-n\bar{y}^2=4798.4$, and $SS_{xy}=\sum xy-n\bar{x}\bar{y}=1231.8$.

- (a) (7%) Find the regression of cholesterol level on age.
- (b) (5%) Plot the scatter diagram and the regression line.
- (c) (5%) Predict the cholesterol level of a 60-year-old man.
- (d) (5%) Construct a 95% confident interval for the slop b of the regression in (b).
- (e) (5%) Is the slop b positive or not? Why or why not?
- 2. (25%) A group of 29 employees has recently been hired. The training director randomly assigns 15 of them to the traditional training method and the rest (14) to the new team-based training. When the training period is completed, she evaluates the employees on the time it takes them to assemble a product. Here are the data and some summary statistics:

Assembly Times in minutes					
Individual Training	9.2, 9.6, 9.1, 9.1, 9.0, 9.1, 9.3, 9.7,				
	9.2, 8.4, 9.5, 8.9, 8.7, 9.3, 8.8				
Team Training	8.5, 8.4, 8.8, 8.6, 8.8, 9.7, 8.7,				
	9.0, 8.2, 9.5, 8.8, 8.9, 8.5, 8.7				

	N	Mean	StDev	SE Mean
Individual training	15	9.127	0.343	0.089
Team training	14	8.793	0.403	0.110

The direct suspects that the team training yields reduced assembly times. To answer this question, please implement the following statistical hypothesis test. Let $n_1 = 15$, $n_2 = 14$, $s_1 = 0.343$, $s_2 = 0.403$. It is known $\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2} = 0.0194$, $\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}} = 0.1394$, $\frac{s_1^2/2}{s_1^2/n_1 + s_2^2/n_2} = 0.4$, $\frac{0.4^2}{14} + \frac{(1-0.4)^2}{13} = 0.03912$.

- (a) (5%) Write down the null hypothesis and the alternative hypothesis.
- (b) (10%) Calculate the statistics for implementing the hypothesis testing.
- (c) (10%) Choosing a significant level of 5%. What is your conclusion?

Table 1: The following table gives quantile q so that $Prob(t_{\nu} > q) = \alpha$, where t_{ν} is the Student-t

di	stribut	ion of	degree	of free	$\operatorname{dom} \nu$	<u>. </u>
ν	4	8	24	25	26	27
α						
0.025	2.78	2.31	2.06	2.06	2.06	2.05
0.05	2.13	1.86	1.71	1.71	1.71	1.70
0.1	1.53	1.40	1.32	1.32	1.31	1.31