國立中央大學104學年度碩士班考試入學試題

所別:統計研究所碩士班 不分組(一般生) 科目:基礎數學 共 2 頁 第] 頁

統計研究所碩士班 不分組(在職生

田計質等,麻油、小能工的

*請在答案卷(卡)內作答

1. (24%) Let f and g be real-valued functions. Prove that

$$\int |f(x)g(x)|dx \leq \left(\int |f(x)|^p dx\right)^{\frac{1}{p}} \left(\int |f(x)|^q dx\right)^{\frac{1}{q}},$$

where $\frac{1}{p} + \frac{1}{q} = 1$...

(a) (8%) Specifically, p = 2, q = 2, show Cauchy-Schwarz inequality.

$$\left(\int f(x)g(x)dx\right)^2 \leq \left(\int f^2(x)dx\right)\left(\int g^2(x)dx\right).$$

(b) (8%) Young's inequality: Let a > 0 and b > 0 and $\frac{1}{p} + \frac{1}{q} = 1$, $1 < p, q < \infty$. Prove that

$$ab \le \frac{a^p}{p} + \frac{b^q}{q}.$$

(Hint: Use the convex function $f(x) = e^x$ and choose $a^p = e^x$ and $b^q = e^y$.)

(c) (8%) Use Young's inequality. Prove that

$$\int |f(x)g(x)|dx \leq \left(\int |f(x)|^p dx\right)^{\frac{1}{p}} \left(\int |f(x)|^q dx\right)^{\frac{1}{q}},$$

where $\frac{1}{p} + \frac{1}{q} = 1$.

- 2. (16%) Find the minimum distance from a point on the following surfaces to the origin:
 - (a) (8%) x + y = z,
 - (b) $(8\%) xy + 2xz = 5\sqrt{5}$.
- 3. (14%) For all x > 0, let $f(x) = \int_x^\infty e^{-\frac{u^2}{2}} du$ and $g(x) = \frac{x}{1+x^2} e^{-\frac{x^2}{2}}$. Prove that
 - (a) (7%)

$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = 1,$$

- (b) (7%) g(x) < f(x).
- 4. (16%) If α , $\beta > 0$ and

$$G = \left(\begin{array}{cc} -\alpha & \alpha \\ \beta & -\beta \end{array}\right).$$

- (a) (8%) Show $G = B\Lambda B^{-1}$.
- (b) (8%) Evaluate $e^G = \sum_{n=0}^{\infty} \frac{1}{n!} G^n$.
- 5. (15%) A matrix of the form $H = I 2\frac{vv^T}{v^Tv}$ is called a Householder transform, where I is identity and v is a non-zero column vector. v^T is the transpose of v.
 - (a) (5%) Evaluate H^2 .
 - (b) (5%) Show that Hv = -v.
 - (c) (5%) Show that if $x^Tv = 0$, then Hx = x.

國立中央大學104學年度碩士班考試入學試題

所別:統計研究所碩士班 不分組(一般生) 科目:基礎數學 共 2 頁 第 2 頁

統計研究所碩士班 不分組(在職生)

*請在答案卷(卡)內作答

6. (15%) Given a full rank matrix

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \\ a_{41} & a_{42} & a_{43} \end{pmatrix},$$

find the eigenvalues for H_i and show trace $H_i = \operatorname{rank} H_i$, $i = 1, \dots, 3$,

- (a) $(5\%)H_1 = A(A^TA)^{-1}A^T$,
- (b) $(5\%)H_2 = H_1^2$,
- (c) $(5\%)H_3 = (I H_1)$,

where A^T is the transpose of A and A^{-1} is the inverse of A.

注:背面有試題