â.

立 政 治 大 缪 舊 館

(雜數數學)

- 1. (10%) Please find the coefficient of X^{32} in $(1 + X^5 + X^9)^{10}$.
- 2. (10%) Please find the disjunctive normal form of the following function:

x	У	z		f(x, y, z)
1	1	1		1
1	1	0		0
1	0	1		0
1	0	0	1	. 1
0	1	1	14	0
0	1	0		0
0	0	1		0
0	. 0	0		1

- 3. (10%) Please draw the transition diagram of a finite-state automaton that accepts the given set of strings that start with baa over $\{a, b\}$.
- 4. (10%) Please solve the following recurrence relation:

$$a_n - 7a_{n-1} + 10a_{n-2} = 0$$
 for $n \ge 2$.

- 5. (10%) Suppose G is an arbitrary digraph with n vertices. What is the largest possible number of distinct subgraphs with k vertices that G may have? (Treat isomorphic subgraphs as distinct. Choose G to maximize this number.)
- 6. (10%) Suppose that a tree T has N_1 vertices of degree 1, N_2 vertices of degree 2, N_3 vertices of degree 3, ... N_k vertices of degree k. Find N_l in terms of N_2 , N_3 ... and N_k .

题

立

政 治

大

學

圖

鸖

館

Linear Algebra

- True or False (10%)
 - The eigenvalues of a real orthogonal matrix must be real.
 - The equation Ax=b has a least-squares solution only if b is in the column space of A.
 - (c) Suppose A and B are n x n matrices, B is invertible, and AB is invertible. Then A must be invertible.
 - Hermitian matrices have only real eigenvalues. (d)
 - (e) Any subset of V (a vector space) containing just one vector must be linearly independent.
- Matrix Decomposition (10%)
 - (a) If A is an mxn real matrix with m>n, then A can be written using the singular value decomposition: A=UDV^T. State the properties of U,D and V. (6%)
 - Let A be the 4 × 4 matrix whose LU decomposition is given by

$$\mathbf{A} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 2 & 1 & 0 & 0 \\ 1 & 2 & 1 & 0 \\ 2 & 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 2 & 2 & 2 & 2 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 2 & 2 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \text{ then } \mathbf{A} = ? \det(\mathbf{A}) = ? (4\%)$$

- 3. Short proof.
 - (a) Given a symmetric matrix A that is independent of a vector x. Show that

$$\frac{\partial}{\partial \mathbf{x}} [\mathbf{x}^{\mathsf{T}} \mathbf{A} \mathbf{x}] = 2 \mathbf{A} \mathbf{x} \quad (5\%) \ (\mathbf{x}^{\mathsf{T}}: \text{ transpose of } \mathbf{x})$$

- (b) Given any square matrix **B**, show that **K**=**B**-**B**^T is skew-symmetric. (5%)
- Find the eigenvalues of the following matrix. Show all the details of your calculation to get full credit. (10%)

備

交 題