				图 工 木	辛力	子	石	土	亏	可人	弘	起 第_	 頁,共_	_/_	_ 頁
招	生星	革 年	度	104				招	生	類	別	碩士班			
系	所	班	別	應用數學系	統計る	項士功	£								
科	目	名	稱	機率與統計											
注	音	事	項	太老科林小人	古田堂	上刑計	質拟	幺 · △	入继法	东於的	自然言			***	

- 1. (10 points) Please interpret the "Central Limit Theorem"?
- 2. (5 points) Assume that X and Y are independent random variables. Can we say that X and Y are uncorrelated? (Please verify your answer.)
- 3. (a) (8 points) Assume X be a random variable with a symmetric probability density function f(x), $-\infty < x < \infty$. Please calculate the expectation value of X^3 (= $E(X^3)$).
 - (b) (7 points) Assume that $X \sim U(a, b)$ (a uniform random variable between a and b). If a < c < b, what is the probability P(X = c)?
- 4. (15 points) Assume $(X_1, X_2, ..., X_n)$ be a random sample from the random variable with the probability density $f(x) = e^{-(x-\theta)}I_{(\theta,\infty)}$, $\theta > 0$. Please find the MLE (maximum likelihood estimator) about θ .
- 5. (15 points) A random sample of 81 measurements was independently chosen from a normal population with the unknown mean (μ) and the known standard deviation ($\sigma = 8$). If the sample mean (\overline{X}) is equal to 25, please calculate a 99% confidence interval for μ . ($Z_{0.05} = 1.645$; $Z_{0.025} = 1.960$ and $Z_{0.005} = 2.575$)
- 6. (20 points) Assume that $(X_1, X_2, ..., X_n)$ be a random sample from $N(\mu, \sigma^2)$ where μ is unknown and σ^2 is known. Please find the UMVUE of μ^3 .
- 7. (20 points) Assume that $(X_1, X_2, ..., X_n)$ be a random sample from the random variable with the probability density $f_{\theta}(x) = e^{-(x-\theta)}I_{(\theta,\infty)}$, $\theta > 0$. Let θ_0 and θ_1 be two constants and $\theta_1 > \theta_0$. Please find a UMP (uniformly most powerful) test of size α for testing $H_0: \theta = \theta_0$ v.s. $H_1: \theta = \theta_1$.