**** 微精分 发 學 **** *** *** *** ***

- 1. (a) Show that for every real x the series $\sum_{n=1}^{\infty} \frac{\sin nx}{n^2}$ converges. (5%)
 - (b) Denoting $f(x) = \sum_{n=1}^{\infty} \frac{\sin nx}{n^2}$, then f(x) is continuous in $[0, \pi]$. (5%)
 - (c) Prove that $\int_0^{\pi} f(x) dx = \sum_{n=1}^{\infty} \frac{1}{(2n-1)^3}.(5\%)$
- 2. Evaluate the limits
 - (a) $\lim_{x\to 0^+} \left(\ln \frac{1}{x}\right)^x$. (7%)
 - (b) $\lim_{h\to 0} \frac{1}{h} \int_{h}^{2h} \left(\frac{\sin^{-1}x}{x}\right)^{\frac{1}{x^2}} dx. (10\%)$
- 3. Let $F(x) = \int_0^x f(t)dt$. Determine a formula (or formulas) for computing F(x) for all real x, if f is defined as follows

(a)
$$f(t) = \frac{2t+5}{t^2+2t-3}$$
. (7%) (b) $f(t) = \frac{1}{\cos t + \sin t}$. (8%)

- 4. Let $f(x, y, z) = x^2 + y^2 + z^2$.
 - (a) Find an equation of the tangent plane to the sphere $x^2 + y^2 + z^2 = 6$. (5%)
 - (b) What is the maximum rate of increase of f at (1,-1,2). (5%)
 - (c) Find the minimum of the values $\frac{|x-y+2z|}{\sqrt{6}}$ on the sphere f(x,y,z)=6. (8%)
- 5. Calculate the iterated integral $\int_0^1 \int_0^y (x \sin x + y^2 \cos x) dx dy.$ (10%)
- 6. Prove or disprove the following statements.
 - (a) If f_n and f are C^{-1} functions and f_n converges uniformly to f in S, then f_n' converges to f' in S. (10%)
 - (b) Let f and g be two functions continuous in a closed interval [a, b] and having derivatives in open interval (a, b). Then there exists c in (a, b) such that

$$f'(c)(g(b) - g(a)) = g'(c)(f(b) - f(a)).$$
 (15%)