- \* Show all your work.
- 1. (15 %) Let V be a finite-dimensional vector space over a field F, and let  $\beta = \{x_1, x_2, \dots, x_n\}$  be an ordered basis for V. Let Q be an  $n \times n$  invertible matrix with entries from F. Define

$$x'_{j} = \sum_{i=1}^{n} Q_{ij} x_{i}$$
, for  $1 \le j \le n$ ,

and set  $\beta' = \{x'_1, x'_2, \dots, x'_n\}$ . Prove that  $\beta'$  is a basis for Vand hence that Q is the change of coordinate matrix changing  $\beta'$ coordinates into  $\beta$ -coordinates.

- 2. (15 %) Let A be an  $m \times n$  matrix with rank m and B be an  $n \times p$ matrix with rank n. Determine the rank of AB. Justify your answer.
- 3. (15 %) Let  $A, B \in M_{m \times n}(F)$  be such that AB = -BA. Prove that if n is odd and F is not a field of characteristic two, then A or B is not invertible.
- 4. (20 %) Two linear operators T and U on a finite-dimensional vector space V are called simultaneously diagonalizable if there exists an ordered basis  $\beta$  for V such that  $[T]_{\beta}$  and  $[U]_{\beta}$  are diagonal matrices. Prove that if T and U are diagonalizable linear operators on a finitedimensional vector space V such that UT = TU, then T and U are simultaneously diagonalizable.
- 5. (15 %) Let A be an  $n \times n$  matrix with complex entries. Prove that  $AA^* = I$  if and only if the rows of A form an orthonormal basis for  $\mathbb{C}^n$ .
- 6. (20 %) For the matrix  $A = \begin{pmatrix} 2 & 1 & 0 & 0 \\ 0 & 2 & 1 & 0 \\ 0 & 0 & 3 & 0 \\ 0 & 1 & -1 & 3 \end{pmatrix}$ , find a basis for each

generalized eigenspace of  $L_A$  consisting of a union of disjoint cycles of generalized eigenvectors. Then find a Jordan canonical form J of A.

隨

卷

交

備