國立臺灣大學 104 學年度碩士班招生考試試題 題號: 479

科目:生物統計學(D)

共 2 頁之第

節次:

※ 注意:請於試卷內之「非選擇題作答區」依序作答,並應註明作答之部份及題號。

請詳細列出計算及推導過程,否則不予計分。題目前括號()內之數字為該題配分。

- 1. (25 points) Let X_1, \dots, X_n be i.i.d. from the Normal distribution $N(\mu_1, \sigma_1^2)$, and let Y_1, \dots, Y_m be i.i.d. form the Normal distribution $N(\mu_2, \sigma_2^2)$. Assume that (X_1, \cdots, X_n) and (Y_1, \cdots, Y_m) are independent.
 - (1) Construct a two-sided $100 \times (1 \alpha)\%$ confidence interval for the ratio of two variances from normal distributions, σ_1^2/σ_2^2 .
 - (2) If we assume that $\mu_1 = \mu_2 = \mu$ and σ_1^2 and σ_2^2 are known, please find constants c and dsuch that the estimator $\hat{\mu} = c\bar{X} + d\bar{Y}$ is unbiased for the population mean μ with the minimum variance.
 - (3) Find the UMVUE (uniformly minimum variance unbiased estimator) of $(\sigma_1/\sigma_2)^r$, where r > 0 and r < m.
 - (4) Assume that $\sigma_1^2 = \sigma_2^2 = \sigma^2 > 0$. Find the UMVUE's of σ^2 and $(\mu_1 \mu_2)/\sigma$.
- 2. (10 points) Let X_1, \dots, X_n be a random sample from the following discrete distribution:

$$P(X_1 = 1) = \frac{2(1-\theta)}{2-\theta}, \ P(X_1 = 2) = \frac{\theta}{2-\theta}$$

where $\theta \in (0,1)$ is unknown. Obtain an estimator of θ using the method of moments and its asymptotic distribution by the central limit theorem and δ -method.

- 3. (15 points) Let X_1, \dots, X_n be a random sample from the uniform distribution on the interval $(\theta, \theta + |\theta|)$. Find the MLE (maximum likelihood estimate) of θ when
 - (1) $\theta \in (0, \infty)$;
 - (2) $\theta \in (-\infty, 0)$;
 - (3) $\theta \in \mathbb{R}, \theta \neq 0$.

見背面

題號: 479 國立臺灣大學 104 學年度碩士班招生考試試題

科目: 生物統計學(D) 題號: 479

節次: 6 共 ≥ 頁之第 ≥ 頁

4. (20 points) Given two independent samples from exponential distribution as $X_1, ..., X_n \sim f(x|\lambda) = \frac{1}{\lambda}e^{-\frac{x}{\lambda}}$ and $Y_1, ..., Y_m \sim f(y|\mu) = \frac{1}{\mu}e^{-\frac{y}{\mu}}$. Consider the hypothesis $H_0: \lambda = \mu$ vs. $H_1: \lambda \neq \mu$.

- (1) Find the maximum likelihood estimate (MLE) of λ under H_0 .
- (2) Show that the likelihood ratio test (LRT) can be based on the test statistic $T = \frac{\sum_{i=1}^{n} X_i}{\sum_{i=1}^{n} X_i + \sum_{i=1}^{m} Y_i}.$
- (3) Find the null distribution of T.
- 5. (30 points) Consider an experiment where in n pairs of patients, one is given the therapy and the other is given a placebo. For the i-th pair, denote $X_i = 1$ if patient receiving the therapy has better recovery, and $X_i = 0$ otherwise. Define $p = (X_i = 1)$ to be the probability that the therapy is effective and $X = \sum_{i=1}^{n} X_i$.
 - (1) Show that p = 0.5 when the therapy has no effect.
 - (2) Consider the hypothesis $H_0: p = 0.5$ vs. $H_1: p \neq 0.5$. Show that LRT rejects H_0 for large value of $\left|X \frac{n}{2}\right|$, i.e., if $\left|X \frac{n}{2}\right| > k$ for some k > 0.
 - (3) Based on the distribution of X, how to determine k so that the type-I error of LRT is less than α .
 - (4) Given n = 10 and k = 4. What is the type-I error of LRT? What is the power of LRT under p = 0.8?

試題隨卷繳回