題號: 389 國立臺灣大學 104 學年度碩士班招生考試試題

科目:微積分(C)

節次: 8

題號: 389 共 4 頁之第 / 頁

※ 注意:請用 2B 鉛筆作答於答案卡,並先詳閱答案卡上之「畫記說明」。

For Questions 1 to 10, select a correct answer for each question and mark the letter (a), (b), (c), or (d) on your answer card.

- 1. (5%) For speeds between 40 and 65 kilometers per hour, a truck gets 480/x kilometers for per liter of diesel gasoline when driven at a constant speed of x kilometers per hour. Diesel gasoline costs \$2.23 per liter, and the driver is paid \$15.10 per hour. What is the most economical constant speed between 40 and 65 kilometers per hour at which to drive the truck?
 - (a) 52.5 kilometers per hour
 - (b) 57 kilometers per hour
 - (c) 65 kilometers per hour
 - (d) None of the above
- 2. (5%) What is the value of $\int_1^2 x^3 \ln(\sqrt{x}) dx$?
 - (a) 0.713
 - (b) 0.865
 - (c) 0.918
 - (d) None of the above
- 3. (5%) Which can be the solution form of A(t) if

$$A'(t) = A^{2}(t) + A(t) - 1$$
, and $A(0) = 0$.

- (a) $A(t) = a + be^{ct} + d$
- (b) $A(t) = \exp(a + be^{ct}) + d$
- (c) $A(t) = (a + be^{ct})^{-1} + d$
- (d) None of the above
- 4. (5%) Consider a cash-or-nothing call option which pays the option holder an amount K at the maturity T only if the asset price at T is larger than K. The pricing formula for this option is as follows.

$$c = Ke^{-rT}N(d),$$

where

$$d = \frac{\ln\left(\frac{S}{K}\right) + \left(r - \frac{\sigma^2}{2}\right)T}{\sigma\sqrt{T}},$$

and S is the current asset price, r is a constant risk-free interest rate, σ is the volatility of the asset price, and $N(\cdot)$ is the cumulative distribution function of the standard normal distribution defined as

$$N(d) = \int_{-\infty}^{d} n(x) dx = \int_{-\infty}^{d} \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} dx.$$

國立臺灣大學 104 學年度碩士班招生考試試題

題號: 389 科目: 微積分(C)

節次: 8

題號: 389 共 4 頁之第 2 頁

Derive the Delta (i.e., $\frac{\partial c}{\partial s}$) of this option,.

(a)
$$\frac{1}{\sqrt{2\pi}\sigma\sqrt{T}}e^{-\frac{(d+\sigma\sqrt{T})^2}{2}}$$

(b)
$$\frac{K}{\sqrt{2\pi}S\sigma\sqrt{T}}e^{-\frac{d^2}{2}}$$

- (c) 0
- (d) None of the above
- 5. (5%) For the pricing formula of the cash-or-nothing call option in Question 4, derive the vega (i.e., $\frac{\partial c}{\partial \sigma}$) of this option.

(a)
$$\frac{K}{\sqrt{2\pi}}e^{-rT+\frac{d^2}{2}}(\sqrt{T}+\frac{d}{\sigma})$$

(b)
$$\frac{\kappa}{\sqrt{2\pi}} e^{-rT + \frac{d^2}{2}} (\sqrt{T} - \frac{d}{\sigma})$$

(c)
$$\frac{-K}{\sqrt{2\pi}}e^{-rT-\frac{d^2}{2}}(\sqrt{T}+\frac{d}{\sigma})$$

- (d) None of the above
- 6. (5%) What is the value of $\lim_{x\to 0} \left(\frac{1}{1-\cos x} \frac{2}{x^2}\right)$?
 - (a) $-\infty$
 - (b) 1/3
 - (c) 1/6
 - (d) ∞
- 7. (5%) Determine whether the following statement is true or false.

"Suppose a_n is positive for all n. If $\sum_{i=1}^{\infty} a_n$ converges, then $\sum_{i=1}^{\infty} \sqrt{a_n a_{n+1}}$ also converges."

- (a) False
- (b) True
- (c) Uncertain (need more information)
- (d) None of the above
- 8. (5%) A community is laid out as a rectangular grid in relation to two main streets that intersect at the city center. Each point in the community has coordinates (x,y) in this grid, for $-10 \le x \le 10$, $-8 \le y \le 8$ with x and y measured in

國立臺灣大學 104 學年度碩士班招生考試試題

科目:微積分(C)

題號: 389

次: 8 共 4 頁之第 3 頁

kilometers. Suppose the value of the land located at the point (x, y) is V thousand dollars, where

$$V(x,y) = (250 + 17x)e^{-0.01x - 0.05y}.$$

Estimate the value of the block of land occupying the rectangular region $1 \le x \le 3$, $0 \le y \le 2$.

- (a) 759 thousand dollars
- (b) 859 thousand dollars
- (c) 959 thousand dollars
- (d) None of the above
- 9. If a positive variable λ follows a gamma distribution, i.e., $\lambda \sim \text{Gamma}(\alpha, \beta)$, where α and β are positive real numbers. Consequently, the probability density function for λ is as follows.

$$f(\lambda) = \beta^{\alpha} \frac{1}{\Gamma(\alpha)} \lambda^{\alpha - 1} e^{-\beta \lambda},$$

where $\Gamma(Z)$ is the gamma function and defined as

$$\Gamma(Z) = \int_0^\infty e^{-t} t^{Z-1} dt,$$

if Z is a complex number with a positive real part. What is the $var(\lambda)$ given $\alpha = 1$ and $\beta = 2$? (5%)

- (a) 1/4
- (b) 1/2
- (c) 1
- (d) None of the above
- 10. (5%) The death rate and birth rate of many animal and plant species fluctuate periodically with the seasons. The population P(t) of such a species at time t changes at a rate that may be modeled by a differential equation of the form

$$\frac{dP}{dt} = (1 + \cos 2\pi t)P.$$

Given the initial population P(0) to be 1000, what is the population P(1.5)?

- (a) 1482
- (b) 2482
- (c) 3482
- (d) None of the above

題號: 389

國立臺灣大學 104 學年度碩士班招生考試試題

科目:微積分(C)

節次: 8

共 4 頁之第 4 頁

For Questions 11 to 15, show your calculations/proof in detail on the answer sheet.

11. (10%) Find
$$dy/dx$$
 given that $y^3 + y^2 - 5y - x^2 = -4$.

12. (10%) Evaluate

$$\int_0^1 \arcsin(x) \, dx.$$

- 13. (10%) Find the interval of convergence for $\sum_{k=1}^{\infty} \frac{2^k x^k}{k}$.
- 14. (10%) Find the surface area of the portion of the plane x + y + z = 1 that lies in the first octant (where $x \ge 0, y \ge 0, z \ge 0$).
- 15. (10%) Suppose X is a metric space and K is a subset of X. Describe and explain the definition of K being a compact set.

試題隨卷繳回