題號: 57

國立臺灣大學 104 學年度碩士班招生考試試題

科目:線性代數(A)

* L . A

題號:

57

共 / 頁之第 | 頁

(1) (15%) Let $V = \mathbb{R}^6$. Let W_1 be the subspace of V spanned by

$$(1, 2, 3, 4, 5, 6), (3, 4, 6, 7, 9, 10), (0, 1, 0, 2, 0, 3), (1, -2, 3, -4, 5, -6),$$

and W_2 be the subspace of V spanned by

$$(1, 1, 1, 2, 2, 3), (-2, 0, -1, 0, 1, 2), (1, 0, 1, 0, 2, 0), (0, 0, 1, 0, -2, -2).$$

Find the dimension of the subspace $W_1 \cap W_2$ and find a basis for this subspace.

(2) (15%) Let

$$C = \begin{bmatrix} -x & 1 & 3 & 1 & 2 \\ -2 & 0 & x & 2 & 2 \\ x & 0 & -2 & -3 & -1 \\ 0 & 0 & 0 & -1 & 0 \\ 1 & 0 & 0 & x & -2 \end{bmatrix}.$$

Find an integer x such that all entries of the inverse of C are integers. For such x, find C^{-1} .

- (3) (15%) Let V be the vector space of all $n \times n$ matrices over F. Let T be the linear operator on V defined by $T(A) = A^t$. Test T for diagonalizability, and if T is diagonalizable, find a basis for V such that the matrix representation of T is diagonal.
- (4) (15%) Let V and W be F-vector spaces, and V^* and W^* be the dual space of V and W, respectively. Let $T:V\to W$ be a linear transformation. Define $T^*:W^*\to V^*$ by $T^*(f)=f\circ T$ for all $f\in W^*$. Show that T is onto if and only if T^* is one to one.
- (5) (10%) Let A and B be $n \times n$ matrices over a field F. Show that if A is invertible, there are at most n scalars c in F such that cA + B is not invertible.

(6) (15%)

- (a) Let S and T be linear operators on a finite-dimensional vector space. If p(t) is a polynomial such that p(ST) = 0, and if q(t) = tp(t), show that q(TS) = 0.
 - (b) What is the relation between the minimal polynomials of ST and TS.
- (7) (15%) Let V be a vector space with a basis $\{u_1, u_2, \ldots, u_n\}$. Let \langle , \rangle be an inner product on V. If c_1, c_2, \ldots, c_n are any n scalars, show that there is exactly one vector v in V such that $\langle v, u_j \rangle = c_j, j = 1, 2, \ldots, n$.

試題隨卷繳回