

- (14 points) A student randomly guesses the answers to a four question true/false test. If there is a 50% chance of guessing correctly on each question.
  - (a) What is the probability that the student misses one question?
  - (b) What is the probability that the student misses no question?
- 3. (14 points) An analysis of personal loans at Mucha Bank revealed the following facts: 15% of all personal loans are in default (D), 85% of all personal loans are not in default (ND), 20% of those in default are homeowners (H | D), and 70% of those not in default are homeowners (H | ND). If one of the personal loans is selected at random,
  - (a) what is P(H ∩D)? Explain the result.
  - (b) what is P(D | H)? Explain the result.
- 4. (20 points) Let  $X_1, X_2, \ldots, X_n$  be n independent random variables having identical distributions with mean  $\mu$  and variance  $\sigma^2$ .
  - (a) Please describe the "Central Limit Theorem" using these variables.
  - (b) Please set up an example to demonstrate the application of this theorem.
- 5. (20 points) Given the following joint probability distribution,

| 75 |   | X    |      |      |  |
|----|---|------|------|------|--|
|    |   | 0    | 1    | 2    |  |
|    | 0 | 0.05 | 0.1  | 0.03 |  |
| Y  | 1 | 0.21 | 0.11 | 0.19 |  |
|    | 2 | 0.08 | 0.15 | 0.08 |  |

- (a) Find the marginal distribution of X and Y.
- (b) Calculate E[X].
- (c) Calculate Var[X].
- (d) Calculate Cov[X,Y].
- (e) Calculate the conditional probability  $Prob[X = 1 \mid Y > 0]$ .
- 6. (20 points) The following data is to be used to construct a linear regression model:

$$\hat{Y}_i = a + bX_i$$

| <u>x</u> | 3  | 5  | 4  | 7  | 12 |
|----------|----|----|----|----|----|
| у        | 10 | 12 | 14 | 18 | 20 |

- (a) What is the value of the slope b?
- (b) What is the value of the intercept a?
- (c) What is the value of the coefficient of determination R<sup>2</sup>?
- (d) What is the value of the standard error of the estimate S<sub>c</sub>?
- (e) Using the significance level 0.05 to test the null hypothesis  $H_0$ :  $\beta = 0$ .

$$(t_{3,0.025} = 3.182)$$