線性代數 Course

應用數學

Period

发工庭 説明:

一. 總共四大題,每大題含十小題 (分别依編號 [1], [2], [3],..., [10] 標示於題句中),每小題計3分(亦即每大題為30分),共120分。

二.作答時,大題中之小題不可顛倒順序。凡答案錯誤,該小題

即不予計分。得分如超過100分,則仍以100分計。

三.在答案卷上,請清楚標明題號及簡潔的答案(演算或證明

步,驟不必列出),如下例:

1. [1] True

[2] False

[3] $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$

[10] T(M)={M | M=[ab], a.b.c,d & R}

2. [1]
$$L = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 2 & 1 \end{bmatrix}$$

[2] B=100

[3] Eigenvalues are 1,2,3,4.

$$[4] \times = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$

[10] A' = [4 3]

 (a) Let T: V → W be a linear transformation, where V, W are vector spaces with bases $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$, $\{\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3\}$ respectively. Suppose $T(\mathbf{v}_1) =$ $\mathbf{w}_1 + \mathbf{w}_2 + \mathbf{w}_3$, $T(\mathbf{v}_2) = \mathbf{w}_2 + \mathbf{w}_3$, and $T(\mathbf{v}_3) = \mathbf{w}_3$. Find the matrix A [1] for Tusing these basis vectors. What input vector \mathbf{v} [2] gives $T(\mathbf{v}) = \mathbf{w}_1$? What are $T^{-1}(\mathbf{w}_1)$ [3], $T^{-1}(\mathbf{w}_2)$ [4], and $T^{-1}(\mathbf{w}_3)$ [5]? Find all \mathbf{v} 's [6] that satisfy (b) Suppose T: V → V with T(M) = where V contains all 2-by-2 matrices M. Find a matrix M [7] with $T(M) \neq O$ (the zero matrix). Describe all matrices M [8] with T(M) = O (the kernel of T) and all output matrices T(M) [9] (the range of T). Suppose $S: V \to V$ with $S(\mathbf{M}) = \mathbf{A}\mathbf{M}\mathbf{B}$, where A and B are invertible 2-by-2 matrices. Then $S^{-1}(\mathbf{M}) = [10].$

Course

M

2. Let L be a unit lower triangular matrix (the diagonal elements of L are all ones) and U an upper triangular matrix. (a) Assume A = LU and B = UL. Determine the following statements as being true or false: (i) A and U have the same column space [1]. (ii) A and U have the same nullspace [2]. (iii) det(A) = det(U) [3]. Express B [4] in terms of A and L by eliminating U. If A is singular, so is B, true or false [5]? What is the relation [6] between the eigenvalues of A and those of B? (b) Find the solution of Ax = b,

the eigenvalues of A and those of B? (b) Find the solution of
$$Ax = b$$
, where $A = \begin{bmatrix} 1 & 4 & 7 \\ 2 & 5 & 8 \\ 3 & 6 & 11 \end{bmatrix}$, $b = \begin{bmatrix} 8 \\ 10 \\ 14 \end{bmatrix}$, by the following procedure: (i)

First factor A into the product of L [7] and U [8]. (ii) Then solve Ly = bfor y [9] by forward substitution. (iii) Finally solve Ux = y to get x [10] by back substitution.

 Consider the real n-by-n matrix A = I+2uu^T, where u ∈ Rⁿ (a column vector with n real components) and $||\mathbf{u}||_2 = \sqrt{\mathbf{u}^T \mathbf{u}} = 1$ (\mathbf{u}^T , a row vector, is the transpose of u). (a) Compute Au and find an eigenvalue [1] of A. For this fixed u, how many [2] linearly independent vectors (up to a scalar multiple) $x \in \mathbb{R}^n$ can you find such that $u^T x = 0$? Now, by choosing such x and computing Ax, determine all the n eigenvalues [3] of A. (b) Let $\mathbf{E} = \mathbf{I} - \sigma \mathbf{u} \mathbf{v}^T$, $\mathbf{F} = \mathbf{I} - \tau \mathbf{u} \mathbf{v}^T$, where σ, τ are real and nonzero, $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$ with $||\mathbf{u}||_2 = ||\mathbf{v}||_2 = 1$. Then $\mathbf{EF} = \mathbf{I}$ if $\mathbf{v}^T \mathbf{u} = [4]$; if $\sigma \mathbf{v}^T \mathbf{u} = [5]$, then \mathbf{E} is singular. Can A be singular for some u [6]? Why? Find A⁻¹ [7] if A is invertible. What can you say about the Jordan form of A [8]? (c) Let G = I + uv^T, where u, v are defined as in part (b). Give the Jordan form

of G (i.e., describe J such that $G = XJX^{-1}$ for some nonsingular X) in two different cases: (i) $\mathbf{v}^\mathsf{T}\mathbf{u} \neq 0$ [9] (ii) $\mathbf{v}^\mathsf{T}\mathbf{u} = 0$ [10].

4. (a) Matrices $\begin{bmatrix} 3 & 0 \\ 0 & 4 \end{bmatrix}$ and $\begin{bmatrix} 3 & 1 \\ 0 & 4 \end{bmatrix}$ are similar, true or false [1]?

Which of the following matrices is/are not diagonalizable [2]? (i)

(ii)
$$\begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$$
 (iii) $\begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix}$ (iv) $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ (v) $\begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$ (vi) $\begin{bmatrix} i & i \\ i & i \end{bmatrix}$, $i = \sqrt{-1}$ (vii) $\begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$. (c) Let $\mathbf{A} = \begin{bmatrix} 2 & \beta \\ 1 & 0 \end{bmatrix}$. If $\beta \neq [3]$, then

$$i = \sqrt{-1}$$
 (vii) $\begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$. (c) Let $\mathbf{A} = \begin{bmatrix} 2 & \beta \\ 1 & 0 \end{bmatrix}$. If $\beta \neq [3]$, then

A is diagonalizable; if $\beta = [4]$, then A is orthogonally diagonalizable (i.e., $A = Q\Lambda Q^{\mathsf{T}}$, where Q is orthogonal and Λ is diagonal). (d) Let $P \neq Q$ be an orthogonal projection matrix (i.e., $P^2 = P$ and $P^T = P$) from \mathbb{R}^n onto a subspace of dimension k < n. What is the minimal polynomial [5] for P? What are the n eigenvalues [6] of P? (e) Find the four eigenvalues

of: (i)
$$\mathbf{A} = \begin{bmatrix} 7 & 1 & 1 & 1 \\ 1 & 7 & 1 & 1 \\ 1 & 1 & 7 & 1 \\ 1 & 1 & 1 & 7 \end{bmatrix}$$
 [7] (Hint: Consider the rank of $\mathbf{A} - \lambda \mathbf{I}$ for some

$$\lambda.) \text{ (ii) } \mathbf{B} = \frac{1}{\sqrt{3}} \begin{bmatrix} 0 & 1 & 1 & 1 \\ -1 & 0 & -1 & 1 \\ -1 & 1 & 0 & -1 \\ -1 & -1 & 1 & 0 \end{bmatrix} [8] \text{ (Hint: } \mathbf{B} \text{ is skew-symmetric and }$$

orthogonal.) (f) Determine the 2-by-2 matrix A [9] such that $f(x_1, x_2) =$