考战科日計算机數學所列資訊科學 考战時間 年月22日上午第4節

計算機數學(離散數學部份)(此部份共計 60 分)

I. 選擇或填充 (不倒扣,每題三分)

- Let ∧, ∨, → and ~ denote the logical AND, OR, implication and NOT operations, respectively. Then which of the following sentences is not a tautology?
 - (a) $(p \rightarrow (q \rightarrow r)) \rightarrow ((p \rightarrow q) \rightarrow (p \rightarrow r))$
 - (b) $p \lor (q \land r) \rightarrow (p \lor q) \land r$
 - (c) \sim (p \rightarrow q) \rightarrow \sim q
 - (d) $p \land (q \lor r) \rightarrow (p \land q) \lor r$
- 2. Let A and B be two regular languages over {0,1}. Then which of the following languages is not a regular language?
 - (a) $\{x \in \{0,1\}^* \mid \text{the last } 3^{\text{rd}} \text{ bit of } x \text{ is "1"} \}$
 - (b) $\{x \in \{0,1\}^* \mid \text{There is a bit string } y \text{ with } |y| = |x| \text{ and } xy \in A \}$
 - (c) $\{xx \mid x \in \{0,1\}^*\}$
 - (d) $\{xy \mid x \in A \text{ and } y \notin B\}$
- 3. Which of the following statements about tree is FALSE?
 - (a) There exists a tree with degrees 3,3,2,2,1,1,1,1.
 - (b) Every tree is bipartite.
 - (c) Every tree is planar.
 - (d) If two trees have the same number of vertices and and the same degrees, then the two trees are isomorphic.
- 4. Which of the following statements is TRUE?
 - (a) There exists a connected planar simple graph with 7 vertices, 9 edges and 5 regions.
 - (b) For all connected multi-graphs G, if the vertices of G have degrees 2,2,2,3,4,4, respectively, then it has an Eular circuit.
 - (c) The chromatic numbers of all planar graphs are less than 4.
 - (d) There exits an irreflexive and transitive relation which is not antiymmetric.

Let $A = \{(x,y) \mid x, y \in \{1,2,3,4,6\}\}$ and define a relation R on A with (x_1,y_1) R (x_2,y_2) if and only if $x_1 y_2 = x_2 y_1$. It is easy to show that R is an equivalence relation on A. Now answer the following two questions:

- 5. What is the size of the equivalence class [(2,4)]?
 - (a) 2
- (b) 3
- (c) 4
- (d) 5

備考試題隨卷繳交

* 战科目計算机数學() 所别資訊科學

考試時

月 日上 午第 星期 下

- 6. How many equivalence classes are there induced by the R relation?
 - (a) 11
- (b) 13
- (c) 17
- (d) 25
- 7. Let S_0 , S_1 , S_2 ,... be a sequence defined as follows: $S_0 = 8$, $S_1 = 10$, and $S_K = 5S_{k-1} 6S_{k-2}$ for all $k \ge 2$. Let the solution of S_n be of the form: $S_n = a \ 2^n + b \ 3^n$ for all $n \ge 0$. Then what is the value of a + b?
 - (a) 6
- (b) 8
- (c) -6
- (d) -4
- 8. What is the maximal number of leaves for a rooted 3-ary tree of height $n \ge 0$. Note the height of a tree with only a single node is 0.
- 9. What is the sum of all coefficients of all terms in the expansion of the $(3x y)^{20}$?
- 10. Find a positive integer $n \le 231$ such that $n = 2 \pmod{3}$, $n = 5 \pmod{7}$ and $n = 2 \pmod{11}$.

II 計算與證明 (共30分)

- 11. (10 pts) For all integer n > 0, define H(n) = 1 + 1/2 + 1/3 + ... + 1/n.
 - (a) Show that for all integer $n \ge 0$, $(n+2)/2 \le H(2^n) \le n+2$.
 - (b) Using the above result to show that $H(n) = \Theta(\log n)$.
- 12. (20pts) A tournament is a directed graph without self-loop such that if $u \neq v$ are two vertices of the graph, then exactly one of (u,v) and (v,u) is an edge of the graph.
 - (a) How many different tournaments are there in a set of n > 0 vertices ? (5 pts)
 - (b) What is the sum of the in-degrees and out-degrees of all vertices in a tournament with n > 0 vertices? (5pts)
 - (c) Show that every tournament has at least a Hamilton path? (Note: A Hamilton path is a path passing through all vertices exactly once. This theorem can be proved by induction) (10 pts)

考 战 科 目 計算机 数学(三)

听别资科多

考试時

星期 下午第

- - (a) Every invertible matrix can be written as a product of elementary matrices.
 - (b) Similar matrices have the same eigenvalues and eigenvectors.
 - (c) If W is a subspace of a vector space of V, then every basis of W can be expanded into a basis for V. Conversely, every basis of V can be reduced to a basis of W.
 - (2) Find all solutions to the following linear system by reducing the associated matrix to row echelon form.

$$2x-y-3z+w=2x-2z+w=1-3x+y+z+2w=3$$
 (8%)

(3) Let V be the space of all 2x2 matrices with real entries. Let T: $V \rightarrow V$ be defined by T(A) = A' where A' is the transpose matrix of A. Show that T is a linear transformation. Is T diagonalizable? Explain your answer. (8%)