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. (4%) Let f(n) be an increasing function satisfying the recurrence relation: fin) =7 fin/2) +
15n%/4. Then which of the following statements are correct? (Z%33€)
(a) f(n) = O(n?) (6) f(n)=o(n’) (¢) fin)=0(n%)
(d) fm) = o(n’) (&) f(n)=©(’)
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(4%) Which of the following statzment is not valid in Boolean algebras.
(@ x(yvtz)=xy+xz (b) x(xty)=x
(b) (x+ty)xtz)=x+yz (d) =(~y)H~x)y=xty

3. (4%) What is the proposition a proof of which does not imply the validity of the implication p
2>q7?
(a)p-> false (b)~p>~q (¢) ~porq (d)~q->false (e)~(pand-~q)

4. (4%) What is the number of non-negative integer solutions to the equation x +y + z < 18 with x
>l,y=2andz>3.

5. (4%) What is the probability of wining the 3 out-of 6 prize in playing Taiwan lottery for
correctly choosing 3 (but not 4, 5 or 6) numbers out of six integers chosen between 1 and 42,
inclusively, by a fair random process. L

6. (5%) What is the least positive integer x satisfying the systemlof congruences : X =2 (mod 5) , X
=5 (mod 11) and x = 11 (mod 17). '

7. (10%)Which of the following statements are correct? (%355 & H—/\EiG 2%)
(a) All spanning trees of a graph have the same number of edges.
(b) If G = (V,E) is a multigraph containing no isolated or pending vertices, then the number of
edges |[E| of G is always less than or equal to the number of vertices [V] of G
(c) The chromatic number of every graph is less than or equal to 4.
(d) There exists a Eular circuit for every complete simple graph Ks with 5 vertices.
(e) There exists one and only one path between every two vertices of a tree.
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8. (10 %) Let G be a directed 'graph with n vertices, x and y two distinct vertices of G. Show that if ==
there is a path from x to y then there must exist a path of length less than n from x to y.

9. (15%) Let < be a preorder on a nonempty set S (i.e., <15 a reflexive and transitive relation on S).
Define a new relation = on S as follows - forallx,y e 8,x = yiffx<yandy=<x.
(a) Show that = is an equivalence relation on S. [6 %]
[et < be a relation on the set S/= of all equivalence classes of S such that for all
A and B belonging to S/=, A < Biff thereexistx e Aandy e B withx <.
(b) Show that the relation < is a partial order on 8/=. [9 %]
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