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1. (4%) How many zeros are there at the end of the decimal representation of 400! ? 1‘ z
(2) 80 (b)96(c)99 (d) 100 ®
&
2. &3

(4%)How many Boolean functions are there with 4 inputs ?
(@) 2* (b)2%(c)2'® (d)2*

. (4%) Which of the following well-formed formulas is not valid under the usual arithmetic

interpretation?
(@ 1=l > 2=3 (b) (1=1 > 2=2) &> (2#2°> 121)
(@) (AxVypxy)) 2> Vydxpxy) (d)(VxIypxy)) 2 3Iyvxpiy)

(4%) Which of the following languages is not regular? Where A and B are two arbitrary regular
languages,

(a) {a""|n=0} (b)A-B (¢) { x| 3y with xy € A and {x|=|y|}

(d) {a™| f(n)=112+n1j landn=0}

(4%) Consider the program S = {x =x+y; y=(y >07?x:-x);}. Suppose after the execution of
the program the postcondition “ x >y ” holds, then which of the foHowing conditions must be
true before the execution of S ?

(@ y<0 (®)x>0 ()x+y20 (dx=y

(4%) Suppose f is an increasing function satisfying the divide-and-conquer relation f(n) =3
f(n/2) + 2n and the initial condition f(1) = 0. What is the asymptotic order of f(n) ?

@6m) - (b)ewlgn () Om"™’)  (d)Om)

(10 %) Suppose that a full 4-ary tree has 27 internal vertices.
(a) How many leaves does it have ? [4%]
(b) What is the smallest height it could possibly have ? [4%]
(c) What is the largest height it could possibly have ? [2%)] '
Note: Single-vertex tree is defined to have height O.
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8. (6%) Solve the recurrence relation a, =
13.

4 a5.1 + 3 ay.> with the initial conditions ag =3 and a, =

G B B B

9. (10%) We call a positive integer perfect if it equals the sum of all its positive devisors other than i
itself.

(a) Find a perfect number in the range (20,30). [3%]

(b) Show that if 2P -1 is prime, then 2P"* (2P -1) is perfect. [7%]

10. (10%) Let A be an infinite set and N the set of all non-negatiye integers. Show that if there is an
onto mapping from N to A, then there must exist a 1-1 and onto mapping (bijection) from A to
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@WW=(23), ¥=03 %0, (Max(xo) v=Q2-D.

@ w={9,4,2,3), V=(0,-,2,0
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